Article | . 2019 Vol. 37, Issue. 2
Comparing Antioxidant Activity and Stilbenic and Flavonoid Compounds for Selecting Korean Wild Grapes Useful for Grape Breeding



Department of Horticulture and Life Science, Yeungnam University1
Gangwon-do Agricultural Research and Extension Service2
Deparment of Biotechnology, Catholic University of Daegu3




2019.. 264:278


PDF XML




Contents of stilbene compounds including resveratrol, piceid, and piceatannol, contents of total phenol and flavonoid compounds, and antioxidant activities were investigated in 19 lines of grapes including 13 lines of Korean wild grapes (Vitis spp.). There are relatively high contents of trans- resveratrol in berries of ‘Vc-1-09-22’, ‘Vc-3-09-05’ (V. coignetiae), and ‘Vf-2’ (V. flexuosa)’. There is relatively high content of trans-resveratrol in ‘Va-1’ (V. amurensis) compared to ‘Campbell Early’ and ‘Kyoho’, grape cultivars. There are high contents of total stilbenic compounds in ‘Vc-3-09-05’, ‘Vc-1-09-22’, ‘Vf-1’, ‘Vf-2’, and ‘Va-1’, as well as total phenol and flavonoid compounds in ‘Vf-GS’, ‘Va-CS’, and ‘Vc-3-09-05’. There were high contents of both trans-resveratrol and total phenol and flavonoid compounds in ‘Vc-3-09-05’. High activities of antioxidant such as scavenging ABTS radicals and DPPH were detected in extracts from ‘Vc-1-09-22’ and ‘Va-1’ berries. Quantification analysis of qualitative data showed that ‘Vc-1-09-22’, ‘Vc-3-09-05’, ‘Vf-2’, and ‘Va-1’ berries have high contents of stilbenic, phenol, and flavonoid compounds and high antioxidant activities. Korean wild grape lines selected by statistical quantification analysis can be utilized as valuable genetic resources for efficiently breeding grapes with biological activities in the future.



1. Ahn SY, Kim SA, Choi SJ, Yun HK (2015) Comparison of accumulation of stilbene compounds and stilbene related gene expression in two grape berries irradiated with different light sources. Hortic Environ Technol 56:6-43. doi:10.1007/s13580-015-0045-x  

2. Arroyo-García R, Ruiz-García L, Bolling L, Ocete R, Lopez MA, Arnold C, Ergul A, Söylemezoğlu G, Uzun HI, et al (2006) Multiple origins of cultivated grapevine ( vinifera L. ssp. sativa) based on chloroplast DNA polymorphimsm. Mol Ecol 15:3707-3714. doi:10.1111/ j.1365-294X.2006.03049.x  

3. Baur JA, Sinclair DA (2006) Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov 5:493-506. doi:10.1038/nrd2060  

4. Bavaresco L, Fregoni C (2001) Physiological role and molecular aspects of grapevine stilbenic compounds. Mol Biol Biotechnol Grapevine 6:153-182. doi:10.1007/978-94-017-2308-4_6  

5. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181:1199-1200. doi:10.1038/1811199a0  

6. Bollmann F, Art J, Henke J, Schrick K, Besche V, Bros M, Li H, Siuda D, Handler N, et al (2014) Resveratrol post-transcriptionally regulates pro-inflammatory gene expression via regulation of KSRP RNA binding activity. Nucleic Acids Res 42:12555-12569. doi:10.1093/ nar/gku1033  

7. Burin VM, Ferreira-Lima NE, Panceri CP, Bordignon-Luiz MT (2013) Bioactive compounds and antioxidant activity of vinifera and V. labrusca grapes: Evaluation of different extraction methods. Microchem J 114:155-163. doi:10.1016/j.microc.2013.12.014  

8. Cambrollé J, García JL, Ocete R, Figueroa ME, Cantos M (2013) Growth and photosynthetic responses to copper in wild grapevine. Chemosphere 93:294-301. doi:10.1016/j.chemosphere.2013.04.080  

9. Chen Q, Diao L, Song H, Zhu X (2018) Rupr: A review of chemistry and pharmacology. Phytomedicine 49:111-122. doi:10.1016/j.phymed.2017.08.013  

10. Choi SJ (2011) The identification of stilbene compounds and the change of their contents in UV-irradiated grapevine leaves. Korean J Hortic Sci Technol 29:374-381   

11. Choi SJ (2012) The influence of UV irradiation on stilbene contents and gray mold incidence in grapevine leaves. Korean J Hortic Sci Technol 30:493-500. doi:10.7235/hort.2012.12095  

12. Choi SY, Cho HS, Sung NJ (2006) The antioxidative and nitrite scavenging ability of solvent extracts from wild grape ( coignetiea) skin. Korean J Soc Food Sci Nutr 35:961-966. doi:10.3746/jkfn.2006.35.8.961   

13. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143-155. doi:10.1016/j.plantsci.2009.05.012  

14. Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovács L, Morgante M, Testolin R, Di Gaspero G (2009) The powdery mildew resistance gene REN1 cosegregates with an NBS-LRR gene cluster in two central Asian grapevines. BMC Genet 10:89. doi:10.1186/1471-2156-10-89  

15. Contreras-Calderón J, Calderón-Jaimes L, Guerra-Hernández E, García-Villanova B (2011) Antioxidant capacity, phenolic content and vitamin C in pulp, peel and seed from 24 exotic fruits from Colombia. Food Res Int 44:2047-2053. doi:10.1016/j.foodres.2010.11.003  

16. Droge W (2001) Free radicals in the physiological control of cell function. Plant Physiol Rev 82:47-95. doi:10.1152/physrev.00018.2001   

17. Duan D, Halter D, Baltenweck R, Tisch C, Tröster V, Kortekamp A, Hugueney P, Nick P (2015) Genetic diversity of stilbene metabolism in sylvestris. J Exp Bot 2015;66:3243-3251. doi:10.1093/jxb/erv137  

18. Ellstrand NC, Heredia SM, Leak-Garcia JA, Heraty JM, Burger JC, Yao L, Nohzadeh-Malakshah S, Ridley CE (2010) Crops gone wild: evolution of weeds and invasive from domesticated ancestors. Evol Appl 3:494-504. doi:10.1111/j.1752-4571.2010.00140.x  

19. Emanuelli F, Battilana J, Costantini L, Le Cunff L, This P, Grando MS (2010) A candidate gene association study for Muscat flavor in grapevine vinifera L. BMC Plant Biol 10:241. doi:10.1186/1471-2229-10-241  

20. Fan ZL, Wang ZY, Liu JR (2011) Cold-field fruit extracts exert different antioxidant and antiproliferative activities in vitro. Food Chem 129:402-407. doi:10.1016/j.foodchem.2011.04.091  

21. FAOSTAT (2014) Food and agricultural commodities production 2014. http://faostat.fao.org  

22. Flamini R, Mattivi F, Rosso MD, Arapitsas P, Bavaresco L (2013) Advanced knowledge of three important classes of grape phenolics: anthocyanins, stilbenes and flavonols. Int J Mol Sci 14:19651-19669. doi:10.3390/ijms141019651  

23. Folin O, Denis W (1915). A colorimetric method for determination of phenols (phenol derivatives) in urine. J Biol Chem 22:305-308  

24. Gao WM, Zhang HL (2006) Protection of polyphenols of Rupr. on injured vascular endothelial cells in vitro. Chin J Pub Health 6:715-716  

25. Gutteridge JMC (1994) Hydroxyl radicals, iron, oxidative stress, and neurodegeneration. Ann N Y Acad Sci 738:201-213. doi:10.1111/ j.1749-6632.1994.tb21805.x  

26. Halliwell B, Aeschbach R, Löliger J, Aruoma OI (1995) The characterization of antioxidants. Food Chem Toxicol 33:601-617. doi:10.1016/0278-6915(95)00024-V  

27. Hung LM, Hung LM, Chen JK, Lee RS, Liang HC, Su MJ (2001) Beneficial effects of astringinin, a resveratrol analogue, on the ischemia and reperfusion damage in rat heart. Free Radic Biol Med 30:877-883. doi:10.1016/S0891-5849(01)00474-9  

28. Imai J, Ide N, Nagae S, Moriguchi T, Matsuura H, Itakura Y (1994) Antioxidant and radical scavenging effects of aged garlic extract and its constituents. Plant Med 60:417-420. doi:10.1055/s-2006-959522  

29. Jeong H, Park SB, Kim S, Kim HK (2007) Total polyphenol content and antioxidative activity of wild grape ( coignetiae) extracts depending on ethanol concentrations. J Korean Soc Food Sci Nutr 36:1491-1496. doi: 10.3746/jkfn.2007.36.12.1491  

30. Kim JY, Seong GU, Hwang IW, Chung SK (2015) Correlation between antioxidant capacities and color values in Korean red grape juices. Korean J Soc Food Sci Nutr 44:1206-1211. doi:10.3746/jkfn.2015.44.8.1206  

31. Kim NY, Choi JH, Kim YG, Jang MY, Moon JH, Park GH, OH DH (2006) Isolation and identification of an antioxidant substance from ethanol extract of wild grape ( coignetiea) seed). Korean J Food Sci Technol 38:109-113  

32. Kim NY, Kim YK, Bae KJ, Chio JH, Moon JH, Park GH, Oh DH (2005) Free radical scavenging effect and extraction condition of ethanol extracts and fractions of wild grape seed ( coignetiea). Korean J Soc Food Sci Nutr 34:755-758. doi:10.3746/jkfn.2005.34.6.755  

33. Kim SA, Ahn SY, Yun HK (2016) Transcriptome analysis of grapevine shoots exposed to chilling temperature for four weeks. Hortic Environ Biotechnol 57:161-172. doi:10.1007/s13580-015-0118-5  

34. Kim SA, Ahn SY, Yun HK (2017) Transcriptomic changes in dormant buds of two grapevine cultivars following exposure to freezing temperature. Hortic Environ Biotechnol 58:152-161. doi:10.1007/s13580-017-0147-8  

35. Kiselev KV, Aleynova OA, Grigorchuk VP, Dubrovina AS (2017) stilbene accumulation and expression of stilbene biosynthesis pathway genes in wild grapevine Rupr. Planta 245:151-159. doi:10.1007/s00425-016-2598-z  

36. Kubola J, Siriamornpun S (2011) Phytochemicals and antioxidant activity of different fruit fractions (peel, pulp, aril, and seed) of Thai gac (Momordic cochinchinensis Spreng). Food Chem 127:1138-1145. doi:10.1016/j.foodchem.2011.01.115  

37. Lee MY, Yoo MS, Whang YJ, Jin YJ, Hong MH, Pyo YH (2012) Vitamin C, total polyphenol, flavonoid contents and antioxidant capacity of several fruit peels. Korean J Food Sci Technol 5:540-544. doi:10.9721/KJFST.2012.44.5.540  

38. Li H, Xia N, Forstermann U (2012) Cardiovascular effects and molecular targets of resveratrol. Nitric Oxide 26: 102-110. doi:10.1016/ j.niox.2011.12.006  

39. Lichtentha R, Marx F (2005) Total oxidant scavenging capacities of common European fruit and vegetable juices. J Agric Food Chem 53:103-110. doi:10.1021/jf0307550  

40. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TFW (2003) Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: Effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide 9:64-76. doi:10.1016/j.niox. 2003.09.005  

41. Mnanach C, Williamson G, Morand C, Scalbert A, Rémésy C (2005) Bioavailability and bioefficacy of polyphenols in humans. Am J Clin Nutr 81:230-242. doi:10.1093/ajcn/81.1.230S  

42. Moon JS, Hur YY, Jung SM, Choi YJ, Nam JC, Park JG, Koh SW (2017) Transcript profiling of native Korean grapevine species flexuosa exposed to dehydration and rehydration treatment. Hortic Environ. Biotechnol. 58:66-77. doi:10.1007/s13580-017-0064-x  

43. Morales M, Bru R, Garcia-Carmona F, Ros Barcelo A, Pedreno MA (1998) Effect of dimethyl-b-cyclodextrins on resveratrol metabolism in Gamay grapevine cell cultures before and after inoculation with Xylophilus ampelinus. Plant Cell Tissue Organ Cult 53:179-187. doi:10.1023/A:1006027410575  

44. Moreno MIN, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical scavenging activity of propolis from several region of Argentina. J Enthrophamacol 71:109-114. doi:10.1016/S0378-8741(99)00189-0  

45. Park HS (2010) Physicochemical property and antioxidant activity of wild grape ( coignetiae) juice. Cul Sci Hos Res 16:297-304  

46. Park SJ, Lee HY, Oh DH (2003) Free radical scavenging of seed and skin extracts from Campbell Early grape ( labruscana B.). Korean J Soc Food Sci Nutr 32:115-118. doi:10.3746/jkfn.2003.32.1.115  

47. Park YS, Heo JY, Kim IJ, Heo SJ, Kim KH, Jeong BC, Park SM (2005a) Growth and fruit characteristics of Rupr. collected in Gangwondo. Korean J Med Crop Sci 13:226-233  

48. Park YS, Heo JY, Kim IJ, Yun SJ, Jung BC, Park SM (2005b) Breeding of wild grape ( Rupr.) ‘Cheongsan’ wine. Korean J Hortic Sci Technol 27(S2):94  

49. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS+ radical cation decolorization assay. Free Radic Biol Med 26:1231-1237. doi:10.1016/S0891-5849(98)00315-3  

50. Reisch BI, Owens CL, Cousins PS (2012) Grape. In ML Badenes and DH Byrne, eds, Fruit Breeding. Springer, NY, pp 225-262. doi:10.1007/978-1-4419-0763-9_7  

51. Revilla E, Carrasco D, Benito A, Arroyo-Garcia R (2010) Anthocyanin composition of several wild grape accessions. Am J Enol Vitic 61:636-642. doi:10.5344/ajev.2010.09134  

52. Riaz S, De Lorenzis G, Velasco D, Koehmstedt A, Maghradze D, Bobokashvili Z, Musayev M, Zdunic G, Laucou V, et al (2018) Genetic diversity analysis of cultivated and wild grapevine ( vinifera L.) accessions around the Mediterranean basin and Central Asia. BMC Plant Biol 18:137. doi:10.1186/s12870-018-1351-0  

53. Romero-Perez AI, Ibern-Gomez M, Lamuela-Raventos RM, de La Torre-Boronat MC (1999) Piceid, the major resveratrol derivative in grape juices. J Agric Food Chem 47:1533-1536. doi:10.1021/jf981024g  

54. Romero-Perez AI, Lamuela-Raventos RM, Andres-Lacueva C, Torre-Boronat MC (2001) Method for the quantitative extraction of resveratrol and Piceid isomers in grape berry skins. Effect of powdery mildew on the stilbene content. J Agric Food Chem 49:210-215. doi:10.1021/jf000745o  

55. Shi J, He M, Cao J, Wang H, Ding J, Jiao Y, Li R, He J, Wang D, Wang Y (2014) The comparative analysis of the potential relationship between resveratrol and stilbene synthase gene family in the development stages of grapes ( quinquangularis and V. vinifera). Plant Physiol Biochem 74:24-32. doi:10.1016/j.plaphy.2013.10.021  

56. Shu-ping J, Wei Z, Li-juan X (2008) Protective effect of the polyphenols of Rupr. on rat heart mitochondria injury induced by oxygen stress. Chin J Contr Endemic Dis 1:18-20  

57. Soleas GJ, Goldberg DM, Diamandis EP, Karumanchiri A, Yan J, Ng E (1995) A derivatized gas chromatographic-mass spectrometric method for the analysis of both isomers of resveratrol in juice and wine. Am J Enol Vitic 46:346-352  

58. Sun B, Ribes AM, Leandro MC, Belchior AP, Spranger MI (2006) Stilbenes: quantitative extraction from grape skins, contribution of grape solids to wine and variation during wine maturation. Anal Chim Acta 563:382-390. doi:10.1016/j.aca.2005.12.002  

59. Sun J, Chu YF, Wu X, Liu RH (2002) Antioxidant and antiproliferative activities of common fruits. J Agric Food Chem 50:7449-7454. doi:10.1021/jf0207530   

60. This P, Lacombe T, Thomas MR (2006) Historical origins and genetic diversity of wine grapes. Trends Genet 22:511-519. doi:10.1016/ j.tig.2006.07.008  

61. Waterhouse AL, Lamuela-Raventos RM (1994) The occurrence of piceid, a stilbene glucoside in grape berries. Phytochemistry 37:571- 573. doi:10.1016/0031-9422(94)85102-6  

62. Won JH, Kim MR (2012) Screening of biological activity of 0.1% hcl-60% ethanol extract from coignetiae’s pericarp and ’s seed. Korean J Food Cookery Sci 28:175-182. doi:10.9724/kfcs.2012.28.2.175  

63. Xia N, Daiber A, Förstermann U, Li H (2017) Antioxidant effects of resveratrol in the cardiovascular system. Brit J Pharmacol 174:1633-1646. doi:10.1111/bph.13492  

64. Xia N, Forstermann U, Li H (2014) Resveratrol as a gene regulator in the vasculature. Curr Pharm Biotechnol 15:401-408. doi:10.2174/ 1389201015666140711114450  

65. Zhang LC, An Z, Yu CL (2007) The effect on the activity of NADPH oxidase of hypertension rat treated by polyphenols. Chin Med Factory Mine 5:463  

66. Zhang T, KrausWL (2010) SIRT1-dependent regulation of chromatin and transcription: linking NAD(+) metabolism and signaling to the control of cellular functions. Biochim Biophys Acta 1804:1666-1675. doi:10.1016/j.bbapap.2009.10.022  

67. Zhou SH, Fang ZX, Lu Y, Chen JC, Liu DH, Ye XQ (2009) Phenolics and antioxidant properties of bayberry (Myrica rubra Sieb. et Zucc.). Food Chem 112:394-399. doi:10.1016/j.foodchem.2008.05.104