Article | . 2019 Vol. 37, Issue. 2
Differential Expression of Ethylene Signaling and Biosynthesis Genes in Floral Organs Between Ethylene-Sensitive and -Insensitive Rose Cultivars

Department of Plant Biotechnology, Sejong University1
Department of Horticulture and Breeding, Andong National University2

2019.. 227:237


The plant hormone ethylene regulates diverse aspects of plant growth and development, including flower senescence and abscission. In cut roses, the impact of ethylene on flower senescence varies greatly depending on the ethylene sensitivity of the floral organs, which is determined by the variety of the rose. To understand the relationship between ethylene synthesis and sensitivity in floral organs, we examined tissue-specific differences in gene expression and regulation using two rose cultivars with differing ethylene sensitivity. We monitored the expression patterns of genes related to ethylene biosynthesis (RhACS1, RhACS2, RhACS3, RhACS4, and RhACO1), receptor (RhETR1, RhETR2, RhETR3, RhETR4, and RhETR5), and signaling (RhCTR1, RhCTR2, RhEIN3-1, RhEIN3-2, and RhEIN3-3) in various floral organs of ethylene-sensitive (SENS; ‘All For Love’) and -insensitive (INSENS; ‘Peach Valley’) rose cultivars. The expression of ethylene-related genes in all floral organs was generally higher in SENS than INSENS cultivars. The presence of exogenous ethylene accelerated the accumulation of RhACS1-4 and RhACO1 transcripts in SENS petals and leaves and in INSENS stamens and stigmas, leading to an increase in RhETR1-5 expression in the floral organs. Meanwhile, RhCTR1-2 expression decreased considerably, with a consequent increase in RhEIN3 transcripts in SENS petals and leaves and INSENS stamens and stigmas. The differential expression of ethylene- related genes in the same tissues indicates that the site of initiation of the ethylene-inducible responses varies among the varieties, and this is probably related to the ethylene sensitivity of the flowers.

1. Bleecker AB, Estelle MA, Somerville C, Kende H (1988) Insensitivity to ethylene conferred by a dominant mutation in Arabidopsis thaliana. Science 241:1086-1089. doi:10.1126/science.241.4869.1086  

2. Borochov A, Woodson WR (1989) Physiology and biochemistry of flower petal senescence,horticultural reviews. Physiology and biochemistry of flower petal senescence. Hortic Rev 11:15-43  

3. Chang C, Kwok S, Bleecker A, Meyerowitz E (1993) Arabidopsis ethylene-response gene ETR1: similarity of product to two-component regulators. Science 262:539-544. doi:10.1126/science.8211181  

4. Doi M, Hu Y, Imanishi H (2000) Water relations of cut roses as influenced by vapor pressure deficits and temperatures. J Jpn Soc Hortic Sci 69:584-589. doi:10.2503/jjshs.69.584  

5. Faragher JD, Mor Y, Johnson F (1987) Role of aminocyclopropane-1-carboxylic acid (ACC) in control of ethylene production in fresh and cold-stored rose flowers. J Exp Bot 38:1839-1847. doi: 10.1093/jxb/38.11.1839  

6. Gao Z, Chen Y-F, Randlett MD, Zhao X-C, Findell JL, Kieber J, Schaller G (2003) Localization of the Raf-like Kinase CTR1 to the endoplasmic reticulum of Arabidopsis through participation in ethylene receptor signaling complexes. J Biol Chem 278:34725-34732. doi:10.1074/jbc.M305548200  

7. Gong B, Huang S, Ye N, Yuan X, Ma H (2018) Pre‑harvest ethylene control affects vase life of cut rose ‘Carola’ by regulating energy metabolism and antioxidant enzyme activity. Hort Environ Biotechnol 59:835-845. doi:10.1007/s13580-018-0053-8  

8. Hua J, Meyerowitz EM (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94:261-271. doi:10.1016/S0092-8674(00)81425-7  

9. Hua J, Sakai H, Nourizadeh S, Chen QG, Bleecker AB, Ecker JR, Meyerowitz EM (1998) EIN4 and ERS2 are members of the putative ethylene receptor gene family in Arabidopsis. Plant Cell 10:1321-1332. doi:10.1105/tpc.10.8.1321  

10. Huang S, Gong B, Wei F, Ma H (2017) Pre-harvest 1-methylcyclopropene application affects post-harvest physiology and storage life of the cut rose cv. Carola. Hortic Environ Biotechnol 58:144-151. doi:10.1007/s13580-017-0081-9  

11. Huang Y, Li H, Hutchison CE, Laskey J, Kieber JJ (2003) Biochemical and functional analysis of CTR1, a protein kinase that negatively regulates ethylene signaling in Arabidopsis. Plant J 33:221-233. doi:10.1046/j.1365-313X.2003.01620.x  

12. In B-C, Binder BM, Falbel TG, Patterson SE (2013) Analysis of gene expression during the transition to climacteric phase in carnation flowers (Dianthus caryophyllus L.). J Exp Bot 64:4923-4937. doi:10.1093/jxb/ert281  

13. In BC, Ha STT, Lee YS, Lim JH (2017) Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biol Technol 131:74-83. doi:10.1016/j.postharvbio.2017.05.003  

14. In B-C, Lim JH (2018) Potential vase life of cut roses: Seasonal variation and relationships with growth conditions, phenotypes, and gene expressions. Postharvest Biol Technol 135:93-103. doi:10.1016/j.postharvbio.2017.09.006  

15. Jones ML (2003) Ethylene biosynthetic genes are differentially regulated by ethylene and ACC in carnation styles. Plant Growth Regul 40:129-138. doi:10.1023/a:1024241006254  

16. Jones ML, Woodson WR (1997) Pollination-induced ethylene in Carnation (Role of stylar ethylene in corolla senescence). Plant Physiol 115:205-212. doi:10.1104/pp.115.1.205  

17. Jones ML, Woodson WR (1999) Differential expression of three members of the 1-aminocyclopropane-1-carboxylate synthase gene family in Carnation. Plant Physiol 119:755-764. doi:10.1104/pp.119.2.755  

18. Kieber JJ, Rothenberg M, Roman G, Feldmann KA, Ecker JR (1993) CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell 72:427-441. doi:10.1016/0092-8674(93)90119-B  

19. Kuroda S, Hakata M, Hirose Y, Shiraishi M, Abe S (2003) Ethylene production and enhanced transcription of an ethylene receptor gene, ERS1, in Delphinium during abscission of florets. Plant Physiol Biochem 41:812-820. doi:10.1016/S0981-9428(03)00115-3  

20. Ma N, Tan H, Liu X, Xue J, Gao J (2006) Transcriptional regulation of ethylene receptor and CTR genes involved in ethylene-induced flower opening in cut rose () cv. Samantha. J Exp Bot 57:2763-2773. doi:10.1093/jxb/erl033  

21. Macnish AJ, Leonard RT, Borda AM, Nell TA (2010) Genotypic variation in the postharvest performance and ethylene sensitivity of cut rose flowers. HortScience 45:790-796. doi:10.21273/HORTSCI.45.5.790  

22. Mor Y, Halevy AH, Spiegelstein H, Mayak S (1985) The site of 1-aminocyclopropane-1-carboxylic acid synthesis in senescing carnation petals. Physiol Plant 65:196-202. doi:10.1111/j.1399-3054.1985.tb02382.x  

23. Mor Y, Johnson F, Faragher JD (1989) Preserving the quality of cold-stored rose flowers with ethylene antagonists. HortScience 24:640-641  

24. Muller R, Andersen AS, Serek M (1998) Differences in display life of miniature potted roses ( L.). Sci Hortic 76:59-71. doi:10.1016/S0304-4238(98)00132-0  

25. Müller R, Owen C, Xue Z-T, Welander M, Stummann B (2003) The transcription factor EIN3 is constitutively expressed in miniature roses with differences in postharvest life. J Hortic Sci Biotechnol 78:10-14. doi:10.1080/14620316.2003.11511575  

26. Müller R, Owen CA, Xue ZT, Welander M, Stummann BM (2002) Characterization of two CTR-like protein kinases in and their expression during flower senescence and in response to ethylene. J Exp Bot 53:1223-1225. doi:10.1093/jexbot/53.371.1223  

27. Muller R, Sisler EC, Serek M (2000a) Stress induced ethylene production, ethylene binding, and the response to the ethylene action inhibitor 1-MCP in miniature roses. Sci Hortic 83:51-59. doi:10.1016/S0304-4238(99)00099-0  

28. Muller R, Stummann BM, Serek M (2000b) Characterization of an ethylene receptor family with differential expression in rose ( L.) flowers. Plant Cell Rep 19:1232-1239. doi:10.1007/s002990000251  

29. Muller R, Stummann BM, Sisler EC, Serek M (2001) Cultivar differences in regulation of ethylene production in miniature rose flowers ( L.). Gartenbauwissenschaft 66:34-38  

30. Mutui TM, Mibus H, Serek M (2007) Influence of thidiazuron, ethylene, abscisic acid and dark storage on the expression levels of ethylene receptors (ETR) and ACC synthase (ACS) genes in Pelargonium. Plant Growth Regul 53:87-96. doi:10.1007/s10725-007-9206-y  

31. Narumi T, Kanno Y, Suzuki M, Kishimoto S, Ohmiya A, Satoh S (2005) Cloning of a cDNA encoding an ethylene receptor (DG-ERS1) from chrysanthemum and comparison of its mRNA level in ethylene-sensitive and -insensitive cultivars. Postharvest Biol Technol 36:21-30. doi:10.1016/j.postharvbio.2004.11.001  

32. O'Neill SD (1997) Pollination regulation of flower development. Annu Rev Plant Physiol Plant Mol Biol 48:547-574. doi:10.1146/annurev. arplant.48.1.547  

33. O'Neill SD, Nadeau JA, Zhang XS, Bui AQ, Halevy AH (1993) Interorgan regulation of ethylene biosynthetic genes by pollination. Plant Cell 5:419-432. doi:10.1105/tpc.5.4.419  

34. Overbeek JHM, Woltering EJ (1990) Synergistic effect of 1-aminocyclopropane-1-carboxylic acid and ethylene during senescence of isolated carnation petals. Physiol Plant 79:368-376. doi:10.1111/j.1399-3054.1990.tb06755.x  

35. Reid MS, Evans RY, Dodge LL, Mor Y (1989) Ethylene and silver thiosulfate influence opening of cut rose flowers. J Am Soc Hortic Sci 114:436-440  

36. Reid MS, Wu M-J (1992) Ethylene and flower senescence. Plant Growth Regul 11:37-43. doi:10.1007/bf00024431  

37. Sakai H, Hua J, Chen QG, Chang C, Medrano LJ, Bleecker AB, Meyerowitz EM (1998) ETR2 is an ETR1-like gene involved in ethylene signaling in Arabidopsis. Proc Natl Acad Sci USA 95:5812-5817. doi:10.1073/pnas.95.10.5812  

38. Shibuya K, Yoshioka T, Hashiba T, Satoh S (2000) Role of the gynoecium in natural senescence of carnation (Dianthus caryophyllus L.) flowers. J Exp Bot 51:2067-2073. doi:10.1093/jexbot/51.353.2067  

39. Singh A, Evensen KB, Kao T-h (1992) Ethylene synthesis and floral senescence following compatible and incompatible pollinations in Petunia inflata. Plant Physiol 99:38-45. doi:10.1104/pp.99.1.38  

40. Tan H, Liu X, Ma N, Xue J, Lu W, Bai J, Gao J (2006) Ethylene-influenced flower opening and expression of genes encoding Etrs, Ctrs, and Ein3s in two cut rose cultivars. Postharvest Biol Technol 40:97-105. doi:10.1016/j.postharvbio.2006.01.007  

41. ten Have A, Woltering EJ (1997) Ethylene biosynthetic genes are differentially expressed during carnation (Dianthus caryophyllus L.) flower senescence. Plant Mol Biol 34:89-97. doi:10.1023/a:1005894703444  

42. Thomas CJR, Smith AR, Hall MA (1985) Partial purification of an ethylene-binding site from Phaseolus vulgaris L. cotyledons. Planta 164:272-277. doi:10.1007/bf00396092  

43. Tieman DM, Klee HJ (1999) Differential expression of two novel members of the tomato ethylene-receptor family. Plant Physiol 120:165-172. doi:10.1104/pp.120.1.165  

44. Verlinden S, Boatright J, Woodson WR (2002) Changes in ethylene responsiveness of senescence-related genes during carnation flower development. Physiol Plant 116:503-511. doi: 10.1034/j.1399-3054.2002.1160409.x  

45. Vriezen WH, van Rijn CPE, Voesenek LACJ, Mariani C (1997) A homolog of the Arabidopsis thaliana ERS gene is actively regulated in Rumex palustris upon flooding. Plant J 11:1265-1271. doi:10.1046/j.1365-313X.1997.11061265.x  

46. Wang D, Fan J, Ranu RS (2004) Cloning and expression of 1-aminocyclopropane-1-carboxylate synthase cDNA from rosa (Rosa × hybrida). Plant Cell Rep 22:422-429. doi:10.1007/s00299-003-0721-7  

47. Xue JQ, Li YH, Tan H, Yang F, Ma N, Gao JP (2008) Expression of ethylene biosynthetic and receptor genes in rose floral tissues during ethylene-enhanced flower opening. J Exp Bot 59:2161-2169. doi:10.1093/jxb/em078  

48. Yau CP, Wang L, Yu M, Zee SY, Yip WK (2004) Differential expression of three genes encoding an ethylene receptor in rice during development, and in response to indole‐3‐acetic acid and silver ions. J Exp Bot 55:547-556. doi:10.1093/jxb/erh055  

49. Zhang JS, Xie C, Shen YG, Chen SY (2001) A two-component gene (NTHK1) encoding a putative ethylene-receptor homolog is both developmentally and stress regulated in tobacco. Theor Appl Genet 102:815-824. doi:10.1007/s001220000469