Article | . 2019 Vol. 37, Issue. 1
Nondestructive Early Detection of Bruising in Pear Fruit Using Optical Coherence Tomography



School of Information and Electronic Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China1
Zhejiang Province Collaborative Innovation Center of Agricultural Biological Resources Biochemical Manufacturing, Hangzhou 310023, China2
Zhejiang Provincial Key Lab. for Chemical and Biological Processing Technology of Farm Products, Hangzhou 310023, China3
College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China4




2019.. 140:150


PDF XML




Pear fruit is susceptible to mechanical injury during harvesting, packaging, and transportation. Optical coherence tomography (OCT) can provide information concerning chemical and microstructural changes of fruit tissues. Therefore, using OCT to evaluate fruit quality is of great significance. In this study, OCT was used for early detection of subtle bruise symptoms underneath the pear peel. First, the signal intensity versus depth in relation to the OCT images of fruit tissue was determined, which was derived from the values of the OCT signal slope (OCTSS) and 1/e light penetration depth (D1/e). Furthermore, shaping (α) and scaling (β) indices were estimated by fitting a gamma distribution function to the signal intensity profile. After mechanical injury, OCTSS, α, and β decreased and the D1/e value increased. Distribution analysis of the relationship between α versus β served as an effective method to identify tissue bruising at an early stage. In conclusion, the results suggest that OCTSS, D1/e, and the α versus β distribution are closely correlated with bruise injury in pear fruit tissues. Thus, OCT is a promising technology for early and nondestructive bruise detection.



1. Baranowski P, Mazurek W, Wozniak J, Majewska U (2012) Detection of early bruises in apples using hyperspectral data and thermal imaging. J Food Eng 110 :345–355. doi:10.1016/j.jfoodeng.2011.12.038  

2. Cao F, Wu D, Zheng J T, Bao Y D, Wang Z Y, He Y (2011) Detection of pear injury based on visible-near infrared spectroscopy and multispectral image. Spectrosc Spect A 31:920-3  

3. Carlo TED, Romano A, Waheed NK, Duker JS (2015) A review of optical coherence tomography angiography (OCTA). Int J Retina Vit 1:1-15. doi:10.1186/s40942-015-0005-8  

4. Castillo MM, Mowatt G, Elders A, Lois N, Fraser C, Hernández R, Amoaku W, Burr JM, Lotery A, et al (2015) Optical coherence tomography for the monitoring of neovascular age-related macular degeneration: a systematic review. Ophthalmology 122:399- 406. doi:10.1016/j.ophtha.2014.07.055  

5. Dong F, Guo Q, Sun S, Ren X, Wang L, Feng S, Gao B Z (2013) Directional weight based contourlet transform denoising algorithm for OCT image. Intell Autom Soft Comput 19:525-535. doi:10.1080/10798587.2013.869110  

6. Feng S, Yuan K, Ye D (2010) Effect of multiple scattering on measured signal losses using optical coherence tomography studied by monte carlo simulation. Int J Innov Comput Inf Control 6:4249-4262  

7. Franck C, Lammertyn J, Ho QT, Verboven P, Verlinden B, Nicolaï BM (2007) Browning disorders in pear fruit. Postharvest Biol Technol 43: 1-13. doi:10.1016/j.postharvbio.2006.08.008  

8. Gao Z, Bu W, Zheng Y, Wu X (2017) Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach. Comput Med Imaging Graph 55:42-53. doi:10.1016/j.compmedimag.2016.07.006  

9. Garcı́A JL, Ruiz-Altisent M, Barreiro P (1995) Factors influencing mechanical properties and bruise susceptibility of apples and pears. J Agric Eng Res 61:11-17. doi:10.1006/jaer.1995.1025  

10. Harker FR, Elgar HJ, Watkins CB, Jackson JJ, Hallett IC (2000) Physical and mechanical changes in strawberry fruit after high carbon dioxide treatments. Postharvest Biol Technol 19:139-146. doi:10.1016/S0925-5214(00)00090-9  

11. Jackson PJ, Harker FR (1999) Apple bruise detection by electrical impedance measurement. HortScience 35:104-107  

12. Keresztes JC, Goodarzi M, Saeys W (2016) Real-time pixel based early apple bruise detection using short wave infrared hyperspectral imaging in combination with calibration and glare correction techniques. Food Control 66:215-226. doi:10.1016/j.foodcont.2016.02.007  

13. Komarnicki P, Stopa R, Szyjewicz D, Młotek M (2016) Evaluation of bruise resistance of pears to impact load. Postharvest Biol Technol 114:36-44. doi:10.1016/j.postharvbio.2015.11.017  

14. Lee WH, Kim MS, Lee H, Delwiche SR, Bae H, Kim DY, Cho BK (2014) Hyperspectral near-infrared imaging for the detection of physical damages of pear. J Food Eng 130:1-7. doi:10.1016/j.jfoodeng.2013.12.032  

15. Li M, Verboven P, Buchsbaum A, Cantre D, Nicolaï B, Heyes J, Mowat A, East A (2015) Characterising kiwifruit (Actinidia sp.) near skin cellular structures using optical coherence tomography. Postharvest Biol Technol 110:247-256. doi:10.1016/j.postharvbio.2015.08.021  

16. Li Z, Thomas C (2014) Quantitative evaluation of mechanical damage to fresh fruits. Trend Food Sci Technol 35:138-150. doi:10.1016/j.tifs.2013.12.001  

17. Lin HT, Xi YF, Chen SJ (2002) A review of enzymatic browning in fruit during storage. J Fuzhou Univ 30:696-708   

18. Lindenmaier AA, Conroy L, Farhat G, Dacosta RS, Flueraru C, Vitkin IA (2013) Texture analysis of optical coherence tomography speckle for characterizing biological tissues in vivo. Opt Lett 38:1280-1282. doi:10.1364/OL.38.001280  

19. Liu D, Sun DW, Zeng XA (2014) Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess Technol 7:307-323. doi:10.1007/s11947-013-1193-6  

20. Liu Y, Wu G, Wei H, Guo Z, Yang H, He Y, Xie S, Zhang Y, Zhu Z (2015) In vitro assessment of effects of hyperglycemia on the optical properties of blood during coagulation using optical coherence tomography. Laser Med Sci 30:1-8. doi:10.1007/s10103-014-1679-0  

21. Pasini J, Bender RJ, Antoniolli LR (2014) Methods to evidence mechanical injuries on ‘Packham's Triumph’ pears. In 29th Int Hortic Congr on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014) 1120:311-316  

22. Patel NA, Stamper DL, Brezinski ME (2005) Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardio Vascular Interv Radiol 28:1-9. doi:10.1007/s00270-003-0021-1  

23. Podoleanu AG (2015) Optical coherence tomography. J Mod Optic 78:976-88. doi:10.1080/09500340.2015.1092220  

24. Pu YY, Feng YZ, Sun DW (2015) Recent progress of hyperspectral imaging on quality and safety inspection of fruits and vegetables: a review. Compr Rev Food Sci Food Saf 14:176-188. doi:10.1111/1541-4337.12123  

25. Rivera NV, Gómez-Sanchis J, Chanona-Pérez J, Carrasco JJ, Millán-Giraldo M, Lorente D, Cubero S, Blasco J (2014) Early detection of mechanical damage in mango using nir hyperspectral images and machine learning. Biosyst Eng 122:91-98. doi:10.1016/ j.biosystemseng.2014.03.009  

26. Shimazaki H, Shinomoto S (2007) A method for selecting the bin size of a time histogram. Neural Comput 19:1503-1527. doi:10.1162/neco.2007.19.6.1503  

27. Sun X, Liu Y, Li Y, Wu M, Zhu D (2016) Simultaneous and online detection of blackheart and soluble solids content for ‘Yali’ pear by visible-near infrared transmittance spectroscopy. Trans Chin Soc Agric Mach 1:30-37  

28. Testoni A, Grassi M (1995) Aspetti qualitativi e conservabilitá di alcune cultivar di nespolo del Giappone. Rev Fruttic 1:33–38  

29. Thybo AK, Jespersen SN, Laerke PE, Stødkilde-Jørgensen HJ (2004) Nondestructive detection of internal bruise and spraing disease symptoms in potatoes using magnetic resonance imaging. Mgt Reson Imaging 22:1311-1317. doi:10.1016/j.mri.2004.08.022  

30. Trottmann M, Kölle S, Leeb R, Doering D, Reese S, Stief C G, Dulohery K, Leavy M, Kuznetsova J, et al (2016) Ex vivo investigations on the potential of optical coherence tomography (OCT) as a diagnostic tool for reproductive medicine in a bovine model. J Biophotonics 9:129-137. doi:10.1002/jbio.201500009  

31. Varith J, Hyde GM, Baritelle AL, Fellman JK, Sattabongkot T (2003) Non-contact bruise detection in apples by thermal imaging. Innov Food Sci Emerg Technol 4:211-218. doi:10.1016/S1466-8564(03)00021-3  

32. Verboven P, Nemeth A, Abera MK, Bongaers E, Daelemans D, Estrade P, Herremans E, Hertog M, Saeys W, et al (2013) Optical coherence tomography visualizes microstructure of apple peel. Postharvest Biol Technol 78:123-132. doi:10.1016/j.postharvbio.2012.12.020  

33. Wang NN, Sun DW, Yang YC, Pu H, Zhu Z (2016) Recent advances in the application of hyperspectral imaging for evaluating fruit quality. Food Anal Method 9:178-191. doi:10.1007/s12161-015-0153-3  

34. Wykoff CC, Berrocal AM, Schefler AC, Uhlhorn SR, Ruggeri M, Hess D (2010) Intraoperative oct of a full-thickness macular hole before and after internal limiting membrane peeling. Ophthalmic Surg Laser Image Retina 41:7-11. doi:10.3928/15428877-20091230-01  

35. Xu X, Lin J, Fu, F (2011) Optical coherence tomography to investigate optical properties of blood during coagulation. J Biomed Opt 16:096002-096002-7. doi:10.1117/1.3615667  

36. Xu X, Zhu Q (2008) Sonophoretic delivery for contrast and depth improvement in skin optical coherence tomography. IEEE J Sel Top Quantum Electron 14:56-61. doi:10.1109/JSTQE.2007.912900  

37. Ying YB, Jing HS, Tao Y (2000) Application of machine vision in identifying size and surface defect of Huanghua pear. 2000 Am Soc Agric Eng Annu Int Meet, Milwaukee, WI, USA, pp 1-13, ref 21  

38. Yurtlu YB, Erdoğan D (2005) Effect of storage time on some mechanical properties and bruise susceptibility of pears and apples. Turk J Agric For 29:469-482  

39. Zhao J, Ouyang Q, Chen Q, Wang J (2010) Detection of bruise on pear by hyperspectral imaging sensor with different classification algorithms. Sens Lett 8:570-576. doi:10.1166/sl.2010.1313  

40. Zhou R, Su S, Yan L, Li Y (2007) Effect of transport vibration levels on mechanical damage and physiological responses of huanghua pears (Pyrus pyrifolia nakai, cv. Huanghua). Postharvest Biol Technol 46:20-28. doi:10.1016/j.postharvbio.2007.04.006  

41. Zhou Y, Liu T, Shi Y, Chen Z, Mao J, Zhou W (2016) Automated internal classification of beadless Chinese ZhuJi freshwater pearls based on optical coherence tomography images. Sci Rep 6:33819. doi:10.1038/srep33819