Article | . 2019 Vol. 37, Issue. 1
Extension of the Vase Life of Cut Roses by Both Improving Water Relations and Repressing Ethylene Responses

Department of Plant Biotechnology, Sejong University1
Department of Horticulture and Breeding, Andong National University2

2019.. 65:77


In cut roses (Rosa hybrida L.), the vase life of ethylene-sensitive cultivars (SENS) is determined by ethylene, and that of ethylene-insensitive cultivars (INSENS) is closely related to water relations. This variation in senescence among rose cultivars makes it difficult to prolong the vase life of cut roses after harvest. In this study, we investigated the combination effect of germicide and ethylene inhibition on the postharvest characteristics of cut rose ‘Matador’ and ‘Dolcetto’ cultivars. Cut roses were treated with three preservative solutions: sodium hypochlorite (Cl), sodium hypochlorite + aminoisobutyric acid (ClA), and sodium hypochlorite + aminoisobutyric acid + 1-methylcyclopropene (ClAM), subsequently exposed to ethylene. We found that all treatments extended the vase life and improved the postharvest quality in the both rose cultivars. Among these, ClAM was the most effective treatment solution, significantly extending the vase life by 4.3 days in ‘Matador’ (SENS) and 4.7 days in ‘Dolcetto’ (INSENS) compared with control flowers. ClAM also effectively inhibited bacterial growth in the vase, enhanced solution uptake, and maintained the initial fresh weight and a positive water balance for longer periods. In addition, we found that ClAM strongly inhibited ethylene-induced petal senescence by suppressing the transcript levels of RhACS2 and RhACO1 in the both rose cultivars. These results suggest that ClAM can be used in a wide range of rose cultivars to prolong the longevity of cut roses due to its combination effects with inhibition of ethylene damage and improvement of water absorption.

1. Ahmadi N, Mibus H, Serek M (2009) Characterization of ethylene-induced organ abscission in F1 breeding lines of miniature roses (Rosa hybrida L.). Postharvest Biol Technol 52:260-266. doi:10.1016/j.postharvbio.2008.12.010  

2. Baker NR, Rosenqvist E (2004) Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. J Exp Bot 55:1607-1621. doi:10.1093/jxb/erh196  

3. Blankenship SM, Dole JM (2003) 1-Methylcyclopropene: a review. Postharvest Biol Technol 28:1-25. doi:10.1016/S0925-5214(02)00246-6  

4. Calatayud A, Roca D, Martínez PF (2006) Spatial-temporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiol Biochem 44:564-573. doi:10.1016/j.plaphy.2006.09.015  

5. Cameron AC, Reid MS (2001) 1-MCP blocks ethylene-induced petal abscission of Pelargonium peltatum but the effect is transient. Postharvest Biol Technol 22:169-177. doi:10.1016/S0925-5214(00)00189-7  

6. Chamani E, Irving DE, Joyce DC, Kafi M, Khalighi A, Mostofi Y, Zamani ZA (2005) Ethylene and anti-ethylene treatment effects on cut 'First Red' rose. J Appl Hortic 7:3-7  

7. Cheng Y, Dong Y, Yan H, Ge W, Shen C, Guan J, Liu L, Zhang Y (2012) Effects of 1-MCP on chlorophyll degradation pathway-associated genes expression and chloroplast ultrastructure during the peel yellowing of Chinese pear fruits in storage. Food Chem 135:415-422. doi:10.1016/j.foodchem.2012.05.017  

8. Cumbal L, Alma K (2016) Novel technique for degradation of silver thiosulfate present in wastewater of the post- harvest treatment of ethylene-sensitive flowers. Biol Med 8:278. doi:10.4172/0974-8369.1000278  

9. Daneshi Nergi MA, Ahmadi N (2014) Effects of 1-MCP and ethylene on postharvest quality and expression of senescence-associated genes in cut rose cv. Sparkle. Sci Hort 166:78-83. doi:10.1016/j.scienta.2013.12.015  

10. Doi M, Hu Y, Imanishi H (2000) Water relations of cut roses as influenced by vapor pressure deficits and temperatures. J Jpn Soc Hortic Sci 69:584-589. doi:10.2503/jjshs.69.584  

11. Ferrante A, Trivellini A, Borghesi E, Vernieri P (2012) Chlorophyll a fluorescence as a tool in evaluating the effects of ABA content and ethylene inhibitors on quality of flowering potted bougainvillea. Sci World J 2012:684747. doi:10.1100/2012/684747  

12. Gong B, Huang S, Ye N, Yuan X, Ma H (2018) Pre-harvest ethylene control affects vase life of cut rose ‘Carola’ by regulating energy metabolism and antioxidant enzyme activity. Hortic Environ Biotechnol 59:835-845. doi:10.1007/s13580-018-0053-8  

13. Huang S, Gong B, Wei F, Ma H (2017) Pre-harvest 1-methylcyclopropene application affects post-harvest physiology and storage life of the cut rose cv. Carola. Hortic Environ Biotechnol 58:144-151. doi:10.1007/s13580-017-0081-9  

14. Ichimura K, Niki T (2014) Ethylene production associated with petal senescence in carnation flowers is induced irrespective of the gynoecium. Plant Physiol 171:1679-1684. doi:10.1016/j.jplph.2014.08.006  

15. Ichimura K, Yoshioka S, Yumoto-Shimizu H (2008) Effects of silver thiosulfate complex (STS), sucrose and combined pulse treatments on the vase life of cut snapdragon flowers. Environ Control Biol 46:155-162. doi:10.2525/ecb.46.155  

16. In BC, Ha STT, Lee YS, Lim JH (2017) Relationships between the longevity, water relations, ethylene sensitivity, and gene expression of cut roses. Postharvest Biol Technol 131:74-83. doi:10.1016/j.postharvbio.2017.05.003  

17. Joyce D, Beal P, Shorter A (1996) Vase life characteristics of selected Grevillea. Aust J Exp Agric 36:379-382. doi:10.1071/EA9960379  

18. Knee M (2000) Selection of biocides for use in floral preservatives. Postharvest Biol Technol 18:227-234. doi:10.1016/S0925-5214(99) 00074-5  

19. Ku VVV, Wills RBH (1999) Effect of 1-methylcyclopropene on the storage life of broccoli. Postharvest Biol Technol 17:127-132. doi:10.1016/S0925-5214(99)00042-3  

20. Liao WB, Zhang ML, Yu JH (2013) Role of nitric oxide in delaying senescence of cut rose flowers and its interaction with ethylene. Sci Hortic 155:30-38. doi:10.1016/j.scienta.2013.03.005  

21. Macnish AJ, Leonard RT, Borda AM, Nell TA (2010a) Genotypic variation in the postharvest performance and ethylene sensitivity of cut rose flowers. HortScience 45:790-796  

22. Macnish AJ, Morris KL, de Theije A, Mensink MGJ, Boerrigter HAM, Reid MS, Jiang C-Z, Woltering EJ (2010b) Sodium hypochlorite: A promising agent for reducing Botrytis cinerea infection on rose flowers. Postharvest Biol Technol 58:262-267. doi:10.1016/ j.postharvbio.2010.07.014  

23. Macnish AJ, Simons DH, Joyce DC, Faragher JD, Hofman PJ (2000) Responses of native Australian cut flowers to treatment with 1-Methylcyclopropene and ethylene. HortScience 35:254-255  

24. Mayak S, Halevy AH, Sagie S, Bar-Yoseph A, Bravdo B (1974) The water balance of cut rose flowers. Physiol Plant 31:15-22. doi:10.1111/j.1399-3054.1974.tb03671.x  

25. Muller R, Andersen AS, Serek M (1998) Differences in display life of miniature potted roses (Rosa hybrida L.). Sci Hortic 76:59-71. doi:10.1016/S0304-4238(98)00132-0  

26. Nilsson T (2005) Effects of ethylene and 1-MCP on ripening and senescence of European seedless cucumbers. Postharvest Biol Technol 36:113-125. doi:10.1016/j.postharvbio.2004.11.008  

27. Onozaki T, Ikeda H, Yamaguchi T (1998) Effect of calcium nitrate addition to. ALPHA.-Aminoisobutyric acid (AIB) on the prolongation of the vase life of cut carnation flowers. J Jpn Soc Hortic Sci 67:198-203. doi:10.2503/jjshs.67.198  

28. Pompodakis NE, Terry LA, Joyce DC, Lydakis DE, Papadimitriou MD (2005) Effect of seasonal variation and storage temperature on leaf chlorophyll fluorescence and vase life of cut roses. Postharvest Biol Technol 36:1-8. doi:10.1016/j.postharvbio.2004.11.003  

29. Pouri HA, Nejad AR, Shahbazi F (2017) Effects of simulated in-transit vibration on the vase life and post-harvest characteristics of cut rose flowers. Hortic Environ Biotechnol 58:38-47. doi:10.1007/s13580-017-0069-5  

30. Rihn AL, Yue C, Hall C, Behe BK (2014) Consumer preferences for longevity information and guarantees on cut flower arrangements. HortScience 49:769-778  

31. Satoh S, Esashi Y (1980) α-Aminoisobutyric acid : A probable competitive inhibitor of conversion of 1-aminocyclopropane-1-carboxylic acid to ethylene. Plant Cell Physiology 21:939-949. doi:10.1093/oxfordjournals.pcp.a076082  

32. Satoh S, Esashi Y (1982) Effects of α-aminoisobutyric acid and D- and L-amino acids on ethylene production and content of 1-aminocyclopropane-1-carboxylic acid in cotyledonary segments of cocklebur seeds. Physiol Plant 54:147-152. doi:10.1111/ j.1399-3054.1982.tb06318.x  

33. Serek M, Sisler EC, Reid MS (1995) Effects of 1-MCP on the vase life and ethylene response of cut flowers. Plant Growth Regul 16:93-97. doi:10.1007/bf00040512  

34. Serek M, Woltering EJ, Sisler EC, Frello S, Sriskandarajah S (2006) Controlling ethylene responses in flowers at the receptor level. Biotechnol Adv 24:368-381. doi:10.1016/j.biotechadv.2006.01.007  

35. Serrano M, Romojaro F, Casas JL, Del Rio JA, Acosta M (1990) Action and mechanism of α-aminoisobutyric acid as a retardant of cut carnation senescence. Sci Hortic 44:127-134. doi:10.1016/0304-4238(90)90023-8  

36. Shimamura M, Ito A, Suto K, Okabayashi H, Ichimura K (1997) Effects of α-aminoisobutyric acid and sucrose on the vase life of Hybrid Limonium. Postharvest Biol Technol 12:247-253. doi:10.1016/S0925-5214(97)00062-8  

37. Sisler EC, Reid MS, Yang SF (1986) Effect of antagonists of ethylene action on binding of ethylene in cut carnations. Plant Growth Regul 4:213-218. doi:10.1007/bf00028164  

38. Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: Recent developments. Physiol Plant 100:577-582. doi:10.1111/j.1399-3054.1997.tb03063.x  

39. Tilahun S, Jeong CS, Park DS (2015) Influence of pulsing biocides on vase life of cut roses (Rosa hybrida L.). Sci Technol Arts Res J 4:79-82. doi:10.4314/star.v4i3.12  

40. van Doorn WG (2012) Water relations of cut flowers: an update. Hortic Rev 40:55-106. doi:10.1002/9781118351871.ch2  

41. van Doorn WG, de Witte Y, Harkema H (1995) Effect of high numbers of exogenous bacteria on the water relations and longevity of cut carnation flowers. Postharvest Biol Technol 6:111-119. doi:10.1016/0925-5214(94)00043-R  

42. van Doorn WG, de Witte Y, Perik RRJ (1990) Effect of antimicrobial compounds on the number of bacteria in stems of cut rose flowers. J Appl Bacteriol 68:117-122. doi:10.1111/j.1365-2672.1990.tb02555.x  

43. Watkins C (2006) The use of 1-methylcyclopropene (1-MCP) on fruits and vegetables. Biotechnol Adv 24:389-409. doi:10.1016/ j.biotechadv.2006.01.005  

44. Xie X, Fang C, Wang Y (2017) Inhibition of ethylene biosynthesis and perception by 1-methylcyclopropene and its consequences on chlorophyll catabolism and storage quality of ‘Bosc’ pears. J Am Soc Hortic Sci 142:92-100. doi:10.21273/JASHS04017-16