Article | . 2018 Vol. 36, Issue. 6
High Electrical Conductivity of Nutrient Solution and Application of Methyl Jasmonate Promote Phenylpropanoid Production in Hydroponically Grown Agastache rugosa

Department of Horticultural Science, Chungnam National University1
Convergence Research Center for Smart Farm Solution, Korea Institute of Science and Technology (KIST), Gangneung Institute of Natural Products2
Department of Bioengineering and Marketing, The University of Suwon3

2018.. 841:852


Agastache rugosa Kuntze, a perennial herb in the Labiatae family, is ubiquitous in Korean fields and is used as a wild vegetable and medicinal herb for traditional therapies. We measured the concentrations of tilianin and acacetin, in hydroponically grown A. rugosa plants cultured in nutrient solutions of various electrical conductivities (ECs) for four weeks and sprayed or not with different concentrations of methyl jasmonate (MeJA). The total acacetin content of A. rugosa shoots ranged from 41.17 mg/plant at 1.0 dS∙m-1 to 50.00 mg/plant at 4.0 dS∙m-1, but did not differ significantly between treatments. Tilianin accumulation in A. rugosa at 2.0 and 4.0 dS∙m-1 was 9.66 and 8.64 mg/plant, respectively, values significantly greater than those observed at 1.0 dS∙m-1. The combined effect of MeJA application and the EC of the nutrient solution influenced the production of both tilianin and acacetin in appreciable amounts. The highest observed levels of tilianin were 2.75 mg∙g-1 at 4.0 dS∙m-1, 2.49 mg∙g-1 at 2.0 dS∙m-1, and 1.62 mg∙g-1 at 1.0 dS∙m-1 after application of 20 µM MeJA. Similarly, the highest observed levels of acacetin were 33.81 mg∙g-1 at 4.0 dS∙m-1 and 20.85 mg∙g-1 at 2.0 dS∙m-1 after application of 10 µM MeJA. We also evaluated the growth parameters of these plants. All growth parameters were affected by the EC of the nutrient solution. The greatest leaf length and width and the longest petiole, internode, and stem measurements were observed at 2.0 dS∙m-1, but these values were lower at 4.0 dS∙m-1. All root parameters increased with increasing EC, peaking at 4.0 dS∙m-1. Our results suggest that high EC nutrient solution together with MeJA application provides optimum conditions for plant growth and accumulation of tilianin and acacetin in hydroponically grown A. rugosa.

1. Afrin S, Huang JJ, Luo ZY (2015) JA-mediated transcriptional regulation of secondary metabolism in medicinal plants. Sci Bull 60:1062–1072. doi:10.1007/s11434-015-0813-0  

2. Ahmad P, Sharma S (2008) Salt stress and phyto-biochemical responses of plants. Plant Soil Environ 54:89–99. doi:10.17221/2774-PSE  

3. Ali MB, Hahn EJ, Paek KY (2007) Methyl jasmonate and salicylic acid induced oxidative stress and accumulation of phenolics in Panax ginseng in bioreactor root suspension cultures. Molecules 12:607–621. doi:10.3390/12030607  

4. Azevedo-Neto AD, Prisco JT, Eneas-Filho J, Abreu CEB, Filho EG (2006) Effect of salt stress on antioxidant enzymes and lipid peroxidation in leaves and roots of salt-tolerant and salt-sensitive maize genotypes. Environ Exp Bot 56:87–94. doi:10.1016/j.envexpbot.2005.01.008  

5. Boonyaritthongchai P, Supapvanich S (2017) Effects of methyl jasmonate on physicochemical qualities and internal browning of ‘queen’ pineapple fruit during cold storage. Hortic Environ Biotechnol 58:479-487. doi:10.1007/s13580-017-0362-3  

6. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Ann Rev Plant Physiol Plant Mol Biol 48:355–381. doi:10.1146/annurev.arplant.48.1.355  

7. Creelman RA, Rao M (2002) The oxylipin pathway in Arabidopsis. The Arabidopsis Book, The American Society of Plant Biologists 1:e0012. doi:10.1199/tab.0012  

8. De Oliveira, Alencar NLM, Gomes-Filho E (2013) Comparison between the water and salt stress effects on plant growth and development In S Akinci, ed, Responses of organisms to water stress. In Tech. doi:10.5772/46157. doi:10.5772/54223  

9. Degl’Innocenti E, Hafsi C, Guidi L, Navari-Izzo F (2009) The effect of salinity on photosynthetic activity in potassium-deficient barley species. J Plant Physiol 166:1968–1981. doi:10.1016/j.jplph.2009.06.013  

10. Dewir YH, Chakrabarty D, Ali MB, Hahn EJ, Paek KY (2005) Effects of hydroponic solution EC, substrates, PPF and nutrient scheduling on growth and photosynthetic competence during acclimatization of micropropagated Spathiphyllum plantlets. Plant Growth Regul 46:241–251. doi:10.1007/s10725-005-0161-1  

11. Estrada-Reyes R, Hernández EA, García-Argáez A, Hernández MS, Linares E, Bye R, Heinze G, Martínez-Vázquez M (2004) Comparative chemical composition of Agastache mexicana subs. mexicana and A. mexicana subsp. xolocotziana. Biochem Syst Ecol 32:685–694. doi:10.1016/j.bse.2004.01.005  

12. EW, Bovdey NA, Kiselev PA, Gaidukevich OA (2010) Characterisation of the essential oil of Agastache rugosa by NMR spectroscopy. J Appl Spectrosc 77:329–334. doi:10.1007/s10812-010-9335-3  

13. Fang Y, Smith MAL, Pépin MF (1999) The effects of exogenous methyl jasmonate in elicited anthocyanin-producing cell cultures of ohelo (Vaccinium pahalae). In Vitro Cell Dev Biol Plant 35:106–113. doi:10.1007/s11627-999-0019-8  

14. Fuentes-Granados RG (1997) Genetic Studies of Agastache. Iowa State University Digital Repository, Ames, IA, USA. doi:10.31274/rtd- 180813-13259  

15. Gengmao Z, Yu H, Xing S, Shihui L, Quanmei S, Changhai W (2015) Salinity stress increases secondary metabolites and enzyme activity in safflower. Ind Crops Prod 64:175–181. doi:10.1016/j.indcrop.2014.10.058  

16. Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930. doi:10.1016/j.plaphy.2010.08.016  

17. Gong H, Zhou X, Zhu M, Ma X, Zhang X, Tian S (2012) Constituents of essential oil isolated from the dried flower and leaf of Agastache rugosa (Fisch. et Mey) from Xinjiang, in China. J Essent Oil Bear Plants 15:534-538. doi:10.1080/0972060X.2012.10644084  

18. Guo KJ, Xu SF, Yin P, Wang W, Song XZ, Liu FH, Xu JQ, Zoccarato I (2011) Active components of common traditional Chinese medicine decoctions have antioxidant functions. J Anim Sci 89:3107–3115. doi:10.2527/jas.2010-3831  

19. Haiyan G, Lijuan H, Shaoyu L, Chen Z, Ashraf MA (2016) Antimicrobial, antibiofilm and antitumor activities of essential oil of Agastache rugosa from Xinjiang, China. Saudi J Biol Sci 23:524–530. doi:10.1016/j.sjbs.2016.02.020  

20. Hernandez-Abreu O, Castillo-Espana P, Leon-Rivera I, Ibarra-Barajas M, Villalobos-Molina R, Gonzalez-Christen J, Vergara-Galicia J, Estrada Soto S (2009) Antihypertensive and vasorelaxant effects of tilianin isolated from Agastache mexicana are mediated by NO/cGMP pathway and potassium channel opening. Biochem Pharmacol 78:54-61. doi:10.1016/j.bcp.2009.03.016  

21. Hernandez-Abreu O, Torres-Piedra M, Garcia-Jimenez S, Ibarra-Barajas M, Villalobos-Molina R, Montes S, Rembao D, Estrada-Soto S (2013) Dose-dependent antihypertensive determination and toxicological studies of tilianin isolated from Agastache mexicana. J Ethnopharmacol 146:187–191. doi:10.1016/j.jep.2012.12.029  

22. Hong JJ, Choi JH, Oh SR, Lee HK, Park JH, Lee KY, Kim JJ, Jeong TS, Oh GT (2001) Inhibition of cytokine-induced vascular cell adhesion molecule-1 expression; possible mechanism for anti-atherogenic effect of Agastache rugosa. FEBS Lett 495:142-147. doi:10.1016/ S0014-5793(01)02379-1  

23. Janicsak G, Mathe I, Mikklosy-Vari V, Blunden G (1999) Comparative studies of the rosmarinic and caffeic acid contents of Lamiaceae species. Biochem Syst Ecol 27:733–738. doi:10.1016/S0305-1978(99)00007-1  

24. Kanani M, Nazarideljou MJ (2017) Methyl jasmonate and α-aminooxi-β-phenyl propionic acid alter phenylalanine ammonia-lyase enzymatic activity to affect the longevity and floral scent of cut tuberose. Hortic Environ Biotechnol 58:136-143. doi:10.1007/ s13580-017-0055-y  

25. Karimi S, Rahemi M, Maftoun M, Eshghi, Tavallali V (2009) Effect of long-term salinity on growth and performance of two pistachio (Pistacia vera L.) rootstocks. Aust J Sci 3:1630–1639  

26. Keinänen M, Oldham NJ, Baldwin IT (2001) Rapid HPLC screening of jasmonate induced increases in tobacco alkaloids, phenolics, and diterpene glycosides in Nicotiana attenuate. J Agric Food Chem 49:3553–3558. doi:10.1021/jf010200+  

27. Kim HJ, Chen F, Wang X, Rajapakse NC (2006) Effect of methyl jasmonate on secondary metabolites of sweet basil (Ocimum basilicum L.). J Agric Food Chem 54:2327–2332. doi:10.1021/jf051979g  

28. Kim HJ, Fonseca JM, Choi JH, Kubota C (2007) Effect of methyl jasmonate on phenolic compounds and carotenoids of romaine lettuce (Lactuca sativa L.). J Agric Food Chem 55:10366–10372. doi:10.1021/jf071927m  

29. Kim NY, Kwon HS, Lee HY (2017) Effect of inhibition on tyrosinase and melanogenesis of Agastache rugosa Kuntze by lactic acid bacteria fermentation. J Cosmet Dermatol 16:407–415. doi:10.1111/jocd.12264  

30. Kim NY, Park DS, Lee HY (2015) Effect of anti-skin wrinkle and antioxidant of Agastache rugosa Kentz through fermentation process of the lactic acid. Korean J Medicinal Crop Sci 23:37–42. doi:10.7783/KJMCS.2015.23.1.37  

31. Kim YB, Kim JK, Uddin MR, Xu H, Park WT, Tuan PA, Li X, Chung E, Lee JH, Park SU (2013) Metabolomics analysis and biosynthesis of rosmarinic acid in Agastache rugosa Kuntze treated with methyl jasmonate. PLoS ONE 8:e64199. doi:10.1371/journal.pone.0064199  

32. Lee CH, Kim HN, Kho YE (2002) Agastinol and agastenol: novel lignans from Agastache rugosa and their evaluation in an apoptosis inhibition assay. J Nat Prod 65:414–416. doi:10.1021/np010425e  

33. Lee MH, Cho EJ, Wi SG, Bae H (2013) Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiol Biochem 70:325–335. doi:10.1016/j.plaphy.2013.05.047  

34. Marschner H (1995) Mineral nutrition of higher plants. Academic press, London, UK, pp 379-396  

35. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Ann Rev Plant Biol 59:651–681. doi:10.1146/annurev.arplant.59.032607.092911  

36. Nam KW, Kim J, Hong JJ, Choi JH, Woonchon M, Cho MH (2005) Inhibition of cytokine-induced IkappaB kinase activation as a mechanism contributing to the anti-atherogenic activity of tilianin in hyperlipidemic mice. Atherosclerosis 180:27–35. doi:10.1016/ j.atherosclerosis. doi:10.1016/j.plaphy.2004.11.022  

37. Nicola S, Hoeberechts J, Fontana E (2005) Comparison between traditional and soilless culture systems to produce rocket (Eruca sativa) with low nitrate content. Acta Hortic 697:549–555. doi:10.17660/ActaHortic.2005.697.72  

38. Pare PW, Tumlinson JH (1999) Plant volatiles as a defense against insect herbivores. Plant Physiol 121:325–331. doi:10.1104/pp.121.2.325  

39. Park SJ, Kim NY, Yoo GJ, Kim YJ, Lee TH, Kim SY, Kim SH (2016) A new flavone glycoside from the leaves of Agastache rugosa (Fisch. & C.A.Mey.) Kuntze. Biochem Syst Ecol 67:17–21. doi:10.1016/j.bse.2016.05.019  

40. Paulus D, Paulus E, Nava GA, Moura CA (2012) Crescimento, consumo hídrico e composição mineral de alface cultivada em hidroponia com águas salinas (Growth, water consumption and mineral composition of lettuce in hydroponic system with saline water). Rev Ceres 59:110–117. doi:10.1590/S0034-737X2012000100016  

41. Piao XC, Chakrabarty D, Hahn EJ, Paek KY (2004) Growth and photosynthetic characteristics of potato plantlets as affected by pH and EC of the nutrient solution in hydroponic system. J Am Soc Hortic Sci 129:100–105  

42. Pichersky E, Gershenzon J (2002) The formation and function of plant volatiles: perfumes for pollinator attraction and defense. Curr Opin Plant Biol 5:237–243. doi:10.1016/S1369-5266(02)00251-0  

43. Ramakrishna A, Ravishankar GA (2011) Influence of abiotic stress signals on secondary metabolites in plants. Plant Signal Behav 6:1720–1731. doi:10.4161/psb.6.11.17613  

44. Rao, SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101-153. doi:10.1016/S0734-9750(02)00007-1  

45. Romero-Aranda R, Soria T, Cuartero J (2001) Tomato plant–water uptake and plant–water relationships under saline growth conditions. Plant Sci 160:265–272. doi:10.1016/S0168-9452(00)00388-5  

46. Saibo NJ, Lourenco T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623. doi:10.1093/aob/mcn227  

47. Saleem M, Ashraf M, Akram NA (2011) Salt (NaCl) induced modulation in some key physio-biochemical attributes in okra (Abelmoschus esculentus L). J Agron Crop Sci 197:202–213. doi:10.1111/j.1439-037X.2010.00453.x  

48. Salem N, Msaada K, Dhifi W, Limam F, Marzouk B (2014) Effect of salinity on plant growth and biological activities of Carthamus tinctorius L. extracts at two flowering stages. Acta Physiol Plant 36:433–445. doi:10.1007/s11738-013-1424-5  

49. Salerno A, Pierandrei F, Rea E, Colla G, Rouphael Y, Saccardo F (2005) Floating system cultivation of radish (Raphanus sativus L.): production and quality. Acta Hortic 697:87–92. doi:10.17660/ActaHortic.2005.697.9  

50. Shin S (2004) Essential oil compounds from Agastache rugosa as antifungal agent against Trichophyton species. Arch Pharm Res 27:295–299. doi:10.1007/BF02980063  

51. Shin S, Kang CA (2003) Antifungal activity of the essential oil of Agastache rugosa Kuntze and its synergism with ketoconazole. Lett Appl Microbiol 36:111–115. doi:10.1046/j.1472-765X.2003.01271.x  

52. Skakovskii ED, Kiselev WP, Tychinskaya LY, Schutova AG, Gonsharova LW, Spiridowish EW, Bovdey NA, Kiselev PA, Gaidukevich OA (2010) Characterisation of the essential oil of Agastache rugosa by NMR spectroscopy. J Appl Spectrosc 77:329–334. doi:10.1007/ s10812-010-9335-3  

53. Spalding EP, Cosgrove DJ (1993) Influence of electrolytes on growth, phototropism, nutation and surface potential in etiolated cucumber seedlings. Plant Cell Environ 16:445–451. doi:10.1111/j.1365-3040.1993.tb00891.x  

54. Szewczyk A (2008) Effects of methyl jasmonate elicitation on the accumulation of phenolic acids in cell culture of Ginkgo biloba L. Zesz Problem Post Nauk Roln 524:419–423  

55. Tabatabaei SJ (2006) Salinity stress and olive: an overview. Plant Stress 1:105–112  

56. Tyerman SD, Skerrett M, Garrill A, Findlay GP, Leigh RA (1997) Pathways for the permeation of Na and Cl into protoplasts derived from the cortex of wheat roots. J Exp Bot 48:459–480. doi:10.1093/jxb/48.Special_Issue.459  

57. Uddin MR, Thwe AA, Kim YB, Park WT, Chae SC, Park SU (2013) Effects of jasmonates on sorgoleone accumulation and expression of genes for sorgoleone biosynthesis in sorghum roots. J Chem Ecol 39:712–722. doi:10.1007/s10886-013-0299-7  

58. Um Y, Lee Y, Kim SC, Jeong YJ, Kim GS, Choi DW, Cha SW, Kim OT (2017) Expression analysis of ginsenoside biosynthesis-related genes in methyl jasmonate-treated adventitious roots of Panax ginseng via DNA microarray analysis. Hortic Environ Biotechnol 58:376-83. doi:10.1007/s13580-017-0041-4  

59. Wang KC, Chang JS, Chiang LC, Lin CC (2009) 4-Methoxycinnamaldehyde inhibited human respiratory syncytial virus in a human larynx carcinoma cell line. Phytomedicine 16:882–886. doi:10.1016/j.phymed.2009.02.016  

60. Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2:302–307. doi:10.1016/S1360-1385(97)89952-9  

61. Wu M, Buck JS, Kubota C (2004) Effects of nutrient solution EC, plant microclimate and cultivars on fruit quality and yield of hydroponic tomatoes. Acta Hortic 659:541–547. doi:10.17660/ActaHortic.2004.659.70  

62. Wu M, Kubota C (2008) Effects of high electrical conductivity of nutrient solution and its application timing on lycopene, chlorophyll and sugar concentrations of hydroponic tomatoes during ripening. Sci Hortic 116:122–129. doi:10.1016/j.scienta.2007.11.014  

63. Yan K, Chen P, Shao H, Zhao S, Zhang L, Zhang L, Xu G, Sun J (2012) Responses of photosynthesis and photosystem II to higher temperature and salt stress in Sorghum. J Agron Crop Sci 198:218–226. doi:10.1111/j.1439-037X.2011.00498.x  

64. Zanin G, Ponchia G, Sambo P, Ortega AE (2011) Seasonal effects on production of radish and lamb's lettuce grown in a floating system. Acta Hortic 893:821–829. doi:10.17660/ActaHortic.2011.893.90  

65. Zhang J, Jia W, Yang J, Ismail AM (2006) Role of ABA in integrating plant responses to drought and salt stresses. Field Crops Res 97:111–119. doi:10.1016/j.fcr.2005.08.018  

66. Zhu JK (2007) Plant salt stress. In Encyclopedia of life sciences. John Wiley & Sons Ltd, Chichester, UK. doi:10.1002/9780470015902. a0001300.pub2