Article | . 2018 Vol. 36, Issue. 6
Influence of Organic and Inorganic Fertilizer Application on Red Pepper Yield, Soil Chemical Properties, and Soil Enzyme Activities



Horticultural and Herbal Crop Environment Division, National Institute of Horticultural and Herbal Science, Rural Development Administration1




2018.. 789:798


PDF XML




Green manures and compost have been widely used as alternatives to chemical fertilizers. The present study aimed to assess the changes in red pepper (Capsicum annuum) yield, soil properties, and soil enzyme activities under organic and inorganic nitrogen fertilizer management. The treatments used here were chemical fertilizer (CF), hairy vetch (Vicia villosa L.) residue with CF (HV+N), and livestock compost (LC). The same amount of nitrogen was applied in all treatments. In general, all fertilization treatments significantly increased red pepper growth, yield, and macronutrient content compared to the control (CON); however, no differences were observed among the fertilization treatments. The phosphorous uptake rate was significantly higher in the HV+N treatment than the LC treatment. Post-experiment soil analysis showed that the LC application significantly increased soil organic matter, electrical conductivity, and available phosphorus content compared to the CF or HV+N treatments. The CF treatment significantly increased the nitrate content in the soil. The HV+N and LC treatments significantly increased soil dehydrogenase activity. The CF treatment resulted in significantly higher urease activity in the soil; whereas there were no differences in β- glucosidase and phosphatase enzyme activities among the treatments. These results suggest that the addition of hairy vetch residue to inorganic fertilizer, or a compost application, can increase enzyme activities while providing similar crop yield to those obtained with a chemical fertilizer application.



1. Bar-Yosef B (2017) Conclusions from the permanent plot experiment at Gilat, Isreal: long-term (35 Y) effects of manure and fertilizer on crop yield, soil fertility, N uptake, and solutes leaching in soil. Isr J Plant Sci 64:124-135. doi:10.1080/07929978.2016.1275360  

2. Birkhofer K, Bezemer TM, Bloem J, Bonkowski M, Christensen S, Dubois D, Ekelund F, Fließbach A, Gunst A, et al (2008) Long-term organic farming fosters below and aboveground biota: Implications for soil quality, biological and productivity. Soil Biol Biochem 40:2297-2308. doi:10.1016/j.soilbio.2008.05.007  

3. Bourn D, Prescott J (2002) Some qualitative aspects of tomatoes grown on NFT. Soilless Culture 3:3-7  

4. Bowles TM, Acosta-Martínez V, Calderón V, Jackson LE (2014) Soil enzyme activities, microbial communities, and carbon and nitrogen availability in organic agroecosystems across an intensively-managed agricultural landscape. Soil Biol Biochem 68:252-262. doi:10.1016/j.soilbio.2013.10.004  

5. Casida L, Klein D, Santoro T (1964) Soil dehydrogenase activity. Soil Sci 98:371-376  

6. Chang EH, Chung RS, Tsai YH (2007) Effect of different application rates of organic fertilizer on soil enzyme activity and microbial population. Soil Sci Plant Nutr 53:132-140. doi:10.1111/j.1747-0765.2007.00122.x  

7. Clark MS, Horwath WR, Shennan, C, Scow KM, Lantni WT, Ferris H (1999) Nitrogen, weeds and water as yield-limiting factors in conventional low-input, and organic tomato systems. Agric Ecosyst Environ 73:257-270. doi:10.1016/S0167-8809(99)00057-2  

8. Colla G, Mitchell JP, Poudel DD, Temple SR (2002) Changes of tomato yield and fruit elemental composition in conventional, low input, and organic systems. J Sustain Agric 20:53-67. doi:10.1300/J064v20n02_07  

9. del Amor FM (2007) Yield and fruit quality response of sweet pepper to organic and mineral fertilization. Renew Agr Food Syst 22:233-238. doi:10.1017/S1742170507001792  

10. Drinkwater LE, Wagoner P, Sarrantonio M (1998) Legume-based cropping systems have reduced carbon and nitrogen losses. Nature 396:262-265. doi:10.1038/24376  

11. Eivazi F, Tabatabai MA (1988) Glucosidases and galactosidases in soils. Soil Biol Biochem 20:601-606. doi:10.1016/0038-0717(88) 90141-1  

12. Elfstrand S, Bath B, Martensson A (2007) Influence of various forms of green manure amendment on soil microbial community composition, enzyme activity and nutrient levels in leek. Appl Soil Ecol 36:70-82. doi:10.1016/j.apsoil.2006.11.001  

13. Graham PH, Vance CP (2000) Nitrogen fixation in perspective: an overview of research and extension needs. Field Crop Res 65:93-106. doi:10.1016/S0378-4290(99)00080-5  

14. Haefele SM, Wopereis MCS, Ndiaye MK, Barro SE, Ould Isselmou M (2003) Internal nutrient efficiencies, fertilizer recovery rates and indigenous nutrient supply of irrigated lowland rice in Sahelian West Africa. Field Crop Res 80:19-32. doi:10.1016/S0378-4290(02)00152-1  

15. Hepperly P, Lotter D, Ulsh CZ, Seidel R, Reider C (2007) Compost, manure and synthetic fertilizer influences crop yields, soil properties, nitrate leaching and crop nutrient content. Compost Sci Util 17:117-126. doi:10.1080/1065657X.2009.10702410  

16. Herencia JF, Ruiz-Porras JC, Melero S, Garcia-Galavis PA, Morillo E, Maqueda, C (2007) Comparison between organic mineral fertilization for soil fertility level crop macronutrient concentrations, and yield. Agron J 99:973-983. doi:10.2134/agronj2006.0168  

17. Hernandez T, Chocano C, Moreno JL, Garcia C (2016) Use of compost as an alternative to conventional inorganic fertilizers in intensive lettuce (Lactuca sativa L.) crops-effects on soil and plant. Soil Tillage Res 160:14-22. doi:10.1016/j.still.2016.02.005  

18. Kandeler E, Gerber H (1988) Short-term assay of soil urease activity using colorimetric determination of ammonium. Biol Fertil Soils 6:68-72. doi:10.1007/BF00257924  

19. Keeling A, McCallum R, Beckwitn C (2003) Mature green waste compost enhances growth and nitrogen uptake in wheat (Triticum aestivum L.) and oilseed rape (Brassica napus L.) through the action of water-extractable factors. Bioresour Technol 90:127-132. doi:10.1016/S0960-8524(03)00125-1  

20. Lavelle P (1988) Earthworm activities and soil system. Biol Fertil Soils 6:237-251. doi:10.1007/BF00260820  

21. Li M, Yost RS (2000) Management-oriented modelling: optimizing nitrogen management with artificial intelligence. Agric Syst 65:1-27. doi:10.1016/S0308-521X(00)00023-8  

22. Lopez A, Fenoll J, Hellin P, Flores P (2013) Physical characteristics and mineral composition of two pepper cultivars under organic, conventional and soilless cultivation. Sci Hortic 150:259-266. doi:10.1016/j.scienta.2012.11.020  

23. Maynard AA (1994) Sustained vegetable production for three years using composted animal manures. Compost Sci Util 2:88-96. doi:10.1080/1065657X.1994.10757922  

24. Montemurro F, Ciaccia C, Leogrande R, Ceglie F, Diacono M (2015) Suitability of different organic amendments from agro-industrial wastes in organic lettuce crops. Nutr Cycl Agroecosyst 102:243-252. doi:10.1007/s10705-015-9694-5  

25. Moon KG, Um IS, Jeon SH, Cho YS, Kim YG, Rho IR (2018) Effect of organic fertilizer application on growth characteristics and saponin content in Codonopsis lanceolate. Hortic Environ Biotechnol 59:125-130. doi:10.1007/s13580-018-0013-3  

26. Mosier AR (2002) Environmental changes associated with needed increases in global nitrogen fixation. Nutr Cycl Agroecosyst 63:101-116. doi:10.1023/A:1021101423341  

27. Muchanga RA, Hirata T, Araki H (2017) Hairy vetch becomes an alternative basal N fertilizer in low-input fresh-market production in a plastic high tunnel. Hortic J 86:493-500. doi:10.17660/ActaHortic.2017.1164.16  

28. Nannipieri P, Grego S, Ceccanti B (1990) Ecological significance of biological activity. In JM Bollag, G Stotzky, eds, Soil Biochemistry, vol. 6. Marcel Dekker, New York, USA, pp 293-355  

29. Ortega R, Miralles I, Meca DE, Gazquez JC, Domene MA (2016) Effect of organic and synthetic fertilizers on the crop yield and macronutrients contents in soil and red pepper. Commun Soil Sci Plant Anal 47:1216-1226. doi:10.1080/00103624.2016.1166246  

30. Ouedraogo E, Mando A, Zombre NP (2001) Use of compost to improve soil properties and crop productivity under low input agricultural system in West Africa. Agric Ecosyst Environ 84:259-266. doi:10.1016/S0167-8809(00)00246-2  

31. Piotrowska A, Wilczewski E (2012) Effects of catch crops cultivated for green manure and mineral nitrogen fertilization on soil enzyme activities and chemical properties. Geoderma 189-190:72-80. doi:10.1016/j.geoderma.2012.04.018  

32. Selvakumar G, Yi PH, Lee SE, Han SG, Chung BN (2018) Hairy vetch, compost and chemical fertilizer management effect on red pepper yield, quality, and soil microbial population. Hortic Environ Biotechnol 59:607-614. doi:10.1007/s13580-018-0078-z  

33. Sinsabaugh RL (1994) Enzymatic analysis of microbial pattern and process. Biol Fertil Soils 17:69-74. doi:10.1007/BF00418675  

34. Stott DE, Andrews SS, Liebig MA, Wienhold BJ, Karlen DL (2010) Evaluation of ß-glucosidase activity as a soil quality indicator for the soil management assessment framework. Soil Sci Soc Am J 74:107-119. doi:10.2136/sssaj2009.0029  

35. Tabatabai MA (1994) Soil enzymes. In RW Weaver, ed, Methods of soil analysis, part 2. Microbiological and biochemical properties. Soil Science Society of America, Madison, WI, USA, pp 775-833  

36. Tabatabai MA, Bremner JM (1969) Use of p-nitrophenyl phosphate for assay of soil phosphatase activity. Soil Biol Biochem 1:301-307. doi:10.1016/0038-0717(69)90012-1  

37. Williams CM (2002) Nutritional quality of organic fruit: shades of grey of shades of green? Proc Nutr Soc 61:19-24. doi:10.1079/ PNS2001126