Article | . 2018 Vol. 36, Issue. 5
Exogenous Spermidine Promoted Ca2+ Absorption in Lettuce Roots and Reduced the Incidence of Tipburn

College of Horticulture, Nanjing Agricultural University1
Center for Environment, Health and Field Sciences, Chiba University2

2018.. 702:712


A physiological disorder, called tipburn, commonly occurs in lettuce (Lactuca sativa L.), particularly in greenhouse cultivation and in hot seasons, and reduces its marketability. Calcium (Ca) deficiency is the main cause of tipburn injury. In the present study, we investigated the effect of exogenous spermidine (Spd) on the occurrence of tipburn in hydroponically cultivated head lettuce (var. capitata L.) and elucidated the role of Ca ions (Ca2+) in its prevention with respect to absorption and transport. Ca deficiency in the nutrient solution resulted in reduced uptake of Ca2+ in lettuce roots, thereby resulting in Ca deficiency in leaves, leading to leaf senescence and tipburn. An application of exogenous Spd promoted Ca2+ uptake in lettuce roots under Ca deficiency and promoted Ca2+ transportation to leaves, especially to inner leaves, thus delaying leaf senescence and reducing the incidence of tipburn. The results indicated that application of exogenous Spd is an effective method to decrease tipburn in lettuce caused by Ca deficiency.

1. Aloni B (1986) Enhancement of leaf tipburn by restricting root growth in Chinese cabbage plants. J Hortic Sci 61:509-513. doi:10.1080/14620316.1986.11515733  

2. An Z, Jing W, Liu Y, Zhang W (2008) Hydrogen peroxide generated by copper amine oxidase is involved in abscisic acid-induced stomatal closure in Vicia faba. J Exp Bot 59:815-825. doi:10.1093/jxb/erm370  

3. Ashkar SA (1971) Lettuce tipburn as related to nutrient imbalance and nitrogen composition. J Am Soc Hortic Sci 96:448-452  

4. Barta DJ, Tibbitts TW (2000) Calcium localization and tipburn development in lettuce leaves during early enlargement. J Am Soc Hortic Sci 125:294-298  

5. Chu Y, Sun J, Wu X, Liu R (2002) Antioxidant and antiproliferative activities of common vegetables. J Agric Food Chem 50:6910-6916. doi:10.1021/jf020665f  

6. Collier GF, Tibbits TW (1982) Tipburn of lettuce. The AVI Press, Connecticut, USA, pp 49-65. doi:10.1002/9781118060773.ch2  

7. Cresswell GC (1991) Effect of lowering nutrient solution concentration at-night on leaf calcium levels and the incidence of tipburn in lettuce (var. Gloria). J Plant Nutr 14:913-924. doi:10.1080/01904169109364252  

8. Flowers TJ, Yeo AR (1986) Ion relations of plants under drought and salinity. Aust Plant Physiol 13:75-91. doi:10.1071/PP9860075  

9. Frantz JM, Ritchie G, Cometti NN, Robinson J, Bugbee B (2004) Exploring the limits of crop productivity: beyond the limits of tipburn in lettuce. J Am Soc Hortic Sci 129:331-338.  

10. Goto E, Takakura T (1992) Promotion of Ca accumulation in inner leaves by air supply for prevention of lettuce tipburn. Transactions of the ASAE 35:647-650. doi:10.13031/2013.28645  

11. Goto E, Takakura T (2003) Reduction of lettuce tipburn by shortening day/night cycle. J Agric Meteorol 59:219-225. doi:10.2480/ agrmet.59.219  

12. He X, Liu X, Sun X, Liang Y, Lu H, Ding Y (2017) Effects of foliar application of calcium ascorbate on the growth and postharvest quality of hydroponic lettuce. J Food Sci Technol 35:78-83 (in Chinese with English abstract).   

13. Hu B, Niu M, Wang Q, Li C, Liu H (2006) Relationship between osmotic stress and polyamine levels in leaves of soybean seedlings. Plant Nutr Fert Sci 12:881-886 (in Chinese with English abstract)  

14. Hussain SS, Ali M, Ahmad M, Siddique KHM (2011) Polyamines: natural and engineered abiotic and biotic stress tolerance in plants. Biotechnol Adv 29:300-311. doi:10.1016/j.biotechadv.2011.01.003  

15. Ji X, Zhang L, Zhang S, Zhang J (2005) A preliminary report on identifying Chinese cabbage to low calcium resistance by the method of insertion of detached leaves. Chin Agr Sci Bull 21:264-266 (in Chinese with English abstract)  

16. Legocka J, Zajchert I (1999) Role of spermidine in the stabilization of the apoprotein of the light-harvesting chlorophyll a/b-protein complex of photosystem II during leaf senescence process. Acta Physiol Plant 21:127-132. doi:10.1007/s11738-999-0066-0   

17. Marty F (1999) Plant vacuoles. Academic Press, London, UK, pp 587-599. doi:10.2307/3870886; doi:10.1105/tpc.11.4.587  

18. Maruo T, Jonkan M (2015) Tipburn. In T Kozai, G Nui, M Takagaki, eds, Plant factory: an indoor vertical farming system for efficient quality food production. Academic Press, pp 173-176  

19. Natti JJ, Atkin JD (1962) Internal tipburn of cabbage. Farm Res 28:4-5  

20. Olle M, Bender I (2009) Causes and control of calcium deficiency disorders in vegetables: a review. J Hortic Sci Biotechnol 84:577-584. doi:10.1080/14620316.2009.11512568  

21. Peng Y, Zhu Y, Mao Y, Wang S, Su W, Tang Z (2004) Alkali grass resists salt stress through high [K] and an endodermis barrier to Na. J Exp Bot 55:939-949. doi:10.1093/jxb/erh071  

22. Sago Y (2016) Effects of light intensity and growth rate on tipburn development and leaf calcium concentration in butterhead lettuce. HortScience 51:1087-1091. doi:10.21273/HORTSCI10668-16  

23. Shen J, Maruo T, Zhu Y, Yan L (2012) Effect of nutrient solution management on growth and tipburn on leaves of hydroponic lettuce. J Jiansu Agric Sci 40:131-134 (in Chinese with English abstract)  

24. Sun J, Lu N, Xu H, Maruo T, Guo S (2016) Root zone cooling and exogenous spermidine root-pretreatment promoting Lactuca sativa L. Growth and photosynthesis in the high-temperature season. Front Plant Sci 7, 368. doi:org/10.3389/fpls.2016.00368  

25. Sun J,Jia Y,Guo S,Chen L (2010) Studies on the movements of ionic selectivity, compatible solutes, and intracellular ions caused in the leaves of spinach (Spinacia oleracea L.) plants cultured in a nutrient solution with seawater. Water Environ Res 82:848-858. doi:10.2175/106143009X12465435982890  

26. Thimann KV, Satler SO (1979) Relation between leaf senescence and stomatal closure: Senescence in light. Proc Natl Acad Sci 76:2295-2298. doi:10.1073/pnas.76.5.2295  

27. Velarde-Buendia AM, Shabala S, Cvikrova M, Dobrovinskaya O, Pottosin I (2012) Salt sensitive and salt-tolerant barley varieties differ in the extent of potentiation of the ROS-induced K efflux by polyamines. Plant Physiol Bioch 6l:18-23. doi:10.1016/j.plaphy.2012.09.002  

28. Walker JC, Edgington LV (1957) Studies of internal tipturn of cabbage. Phytopathology 47:537  

29. Wen F, Sun D, Ju P, Su Y, An Z (1991) Effect of NAA on calcium absorption and translocation and prevention of tipburn in Chinese cabbage. Acta Hortic Sinica 18:148-152 (in Chinese with English abstract)  

30. Wingler A, Marès M, Pourtau N (2004) Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence. New Phytol 161:781-789. doi:10.1111/j.1469-8137.2004.00996.x  

31. Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Bioph Res Co 352:486-490. doi:10.1016/j.bbrc.2006.11.041  

32. Zhang G, Shen S, Takagaki M, Kozai T, Yamori W (2015) Supplemental upward lighting from underneath to obtain higher marketable lettuce (Lactuca sativa) leaf fresh weight by retarding senescence of outer leaves. Front Plant Sci 6:1110. doi:10.3389/fpls.2015.01110  

33. Zhao F, Wang X, Wang H, Zhang G (1999) The changes of polyamine metabolism in the process of growth and development of peanut leaves. Acta Agron Sinica 25:249-253 (in Chinese with English abstract)  

34. Zhou H, Guo S, An Y, Shan X, Wang Y, Shu S, Sun J (2016) Exogenous spermidine delays chlorophyll metabolism in cucumber leaves (Cucumis sativus L.) under high temperature stress. Acta Physiol Plant 38, 224. doi:10.1007/s11738-016-2243-2