Article | . 2018 Vol. 36, Issue. 5
Abiotic Factors Influencing Growth and Ginsenoside Content of Panax ginseng Roots

National Institute of Agricultural Sciences, RDA1
Korea Food for the Hungry International2

2018.. 681:690


We aimed to evaluate the effects of abiotic factors on root growth and ginsenoside content of Panax ginseng and on the tradeoff between these two properties. Three experiments tested the effects of fertilization, soil particle size and cultivation site, respectively, on root growth and ginsenoside content. Moderate applications of nitrogen, phosphorus, and potassium did not significantly influence ginsenoside content. Root weight was negatively correlated with ginsenosides Rg1 and Rg2 with excessive fertilization, suggesting that environmental stress caused by excessive fertilization might have created a tradeoff. We tested the effect of soil type by separating soil out according to particle size (ie, < 0.5, 0.5-1 and 1-2 mm, and a mixed control). Root weight was lower in soil of < 0.5 mm, and roots were longer in soil of 1-2 mm compared with those of the control. Total ginsenoside and ginsenoside Rb1 content was lower in soil of < 0.5 mm than those of the unsieved control. These results indicate that soil texture is an important factor determining ginsenoside yield and root quality. The effect of cultivation site was compared among 5 locations using the same soil type. There was a 2.8-fold difference in root weight and a 2.1-fold difference in total ginsenoside content between the highest and lowest values among 5 sites, and no significant correlation was found between root growth and ginsenoside content. Our results suggest that ginsenoside content was influenced by abiotic stresses caused by changes in nutrient, moisture, and temperature. We conclude that proper management of abiotic stresses can promote both root growth and ginsenoside content without a tradeoff between these two properties.

1. Attele AS, Wu JA, Yuan CS (1999) Ginseng pharmacology: multiple constituents and multiple actions. Biochem Pharmacol 58:1685- 1693. doi:10.1016/S0006-2952(99)00212-9   

2. Baeg IH, SO SH (2013) The world ginseng market and the ginseng (Korea). J Ginseng Res 37:1-7. doi:10.5142/jgr.2013.37.1  

3. Barbara K, Ewa K, Jerzy K, Aleksander C (2006) The effect of growth regulators on quality parameters and ginsenosides accumulation in Panax quinquefolium L. roots. Plant Growth Regul 48:13-19. doi:10.1007/s10725-005-5088-z  

4. Chuang WC, Sheu SJ (1994) Determination of ginsenosides in ginseng crude extracts by high-performance liquid chromatography. J Chromatogr 685:243-251. doi:10.1016/0021-9673(94)00724-1  

5. Court WA, Reynolds LB, Hendel JG (1996) Influence of root age on the concentration of ginsenosides of American ginseng (panox quinquefolium). Can J Plant Sci 76:853-855. doi:10.4141/cjps96-144  

6. Devi BSR, Kim YJ, Selvi SK, Gayathri S, Altanzul K, Parvin S, Yang DU, Lee OR, Lee S, et al (2012) Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russ J Plant Physiol 59:318-325. doi:10.1134/ S1021443712030041  

7. Dong TT, Cui XM, Song ZH, Zhao KJ, Ji ZN, Lo CK, Tsim KW (2003) Chemical assessment of roots of Panax notoginseng in China: regional and seasonal variations in its active constituents. J Agric Food Chem 51:4617-4623. doi:10.1021/jf034229k   

8. Dubey VS, Bhalla R, Luthra R (2003) An overview of the nonmevalonate pathway for terpenoid biosynthesis in plants. J Biosci 28:637- 646. doi:10.1007/BF02703339  

9. Eo J, Park KC (2013) Effects of manure composts on soil biota and root-rot disease incidence of ginseng (Panax ginseng). Appl Soil Ecol 71:58-64. doi:10.1016/j.apsoil.2013.05.005  

10. Flurnier AR, Proctor JTA, Gauthier L, Khanizadeh S, Belanger A, Gosselin A, Dorais M (2003) Understory light and root ginsenosides in forest-grown Panax quinquefolius. Phytochemistry 63:777-782. doi:10.1016/S0031-9422(03)00346-7  

11. Hampel D, Swatski A, Mosandl A, Wust M (2007) Biosynthesis of monoterpenes and norisoprenoids in raspberry fruits (Rubus idaeus L.): the role of cytosolic mevalonate and plastidial methylerythritol phosphate pathway. J Agric Food Chem 55:9296-9304. doi:10.1021/jf071311x  

12. Hassink J (1997) The capacity of soils to preserve organic C and N by their association with clay and silt particles. Plant Soil 191:77-87. doi:10.1023/A:1004213929699  

13. Haukioja E, Ossipov V, Korichev AJ, Honkanen T, Larsson S, Lempa K (1998) Biosynthetic origin of carbon-based secondary compounds: cause of variable responses of woody plants to fertilization? Chemoecology 8:133-139. doi:10.1007/s000490050018  

14. Ibrahim MH, Jaafar HZE, Karimi E, Ghasemzadeh A (2013) Impact of organic and inorganic fertilization on the phytochemical and antioxidant activity of Kacip Fatimah (Labisia pumila Benth). Molecules 18:10973-10988. doi:10.3390/molecules180910973  

15. Jang IB, Lee DY, Yu J, Park HW, Mo HS, Park KC, Hyun DY, Lee EH, Kim KH, et al (2015) Photosynthesis rates, growth, and ginsenoside contents of 2-yr-old Panax ginseng grown at different light transmission rates in a greenhouse. J Ginseng Res 39:345-353. doi:10.1016/j.jgr.2015.03.007  

16. Jochum GM, Mudge KW, Thomas RB (2007) Elevated temperatures increase leaf senescence and root secondary metabolite concentrations in the understory herb Panax Quinquefolius (Araliaceae). Am J Bot 94:819-826 doi:10.3732/ajb.94.5.19  

17. Kim GS, Lee SE, Noh HJ, Kwon H, Lee SW, Kim SY, Kim YB (2012) Effects of natural bioactive products on the growth and ginsenoside contents of Panax ginseng cultured in an aeroponic system. J Ginseng Res 36:430-441. doi:10.5142/jgr.2012.36.4.430  

18. Konsler TR, Zito SW, Shelton JE, Staba EJ (1990) Lime and phosphorus effects on American ginseng: II. Root and leaf ginsenoside content and their relationship. J Am Hortic Soc 115:575-580  

19. Lee J, Mudge KW (2013a) Gypsum effects on plant growth, nutrients, ginsenosides, and their relationship in American ginseng. Hortic Environ Biotechnol 54:228-235. doi:10.1007/s13580-013-0029-7  

20. Lee J, Mudge KW (2013b) Water deficit affects plant and soil water status, plant growth, and ginsenoside contents in American ginseng. Hortic Environ Biotechnol 54:475-483. doi:10.1007/s13580-013-0090-2  

21. Lee SW, Park JM, Kim GS, Park KC, Jang IB, Lee SH, Kang SW, Cha SW (2012) Comparison of growth characteristics and ginsenosides content of 6-year-old ginseng (Panax ginseng C.A. Meyer) by drainage class in paddy field. Korean J Med Crop Sci 20:177-183  

22. Li TSC (1997) Effect of seeding depth and of soil texture on seedling emergence and root shape of American ginseng. Korean J Ginseng Sci 21:115-118  

23. Li TSC, Mazza G (1999) Correlations between leaf and soil mineral concentrations and ginsenoside contents in American ginseng. HortScience 34:85-87  

24. Lim WS, Mudge KW, Lee JW (2006) Effect of water stress on ginsenoside production and growth of American ginseng. HortTechnology 16:517-522  

25. Massad TJ, Dyer LA, Vega CG (2012) Costs of defense and a test of the carbon-nutrient balance and growth-differentiation balance hypotheses for two co-occurring classes of plant defense. PLoS ONE 7:e47554 doi:10.1371/journal.pone.0047554  

26. Neilson EH, Goodger JQD, Woodrow IE, Moller BL (2013) Plant chemical defense: at what cost? Trends Plant Sci 18:250-258 doi: 10.1016/j.tplants.2013.01.001  

27. Nicol RW, Traquair JA, Bemards MA (2002) Ginsenosides as host resistance factors in American ginseng (Panax quinquefolius). Can J Bot 80:557-562. doi:10.1139/b02-034  

28. Park H, Lee MK, Lee CH (1986) Effect of nitrogen phosphorus and potassium on ginsenoside composition of Panax ginseng root grown with nutrient solution. J Korean Agr Chem Soc 29:78-82.   

29. Park HW, Mo HS, Jang IB, Yu J, Lee YS, Kim YC, Park KC, Lee EH, Kim KH, et al (2015) Emergence rate and growth characteristics of ginseng affected by different types of organic matters in greenhouse of direct-sowing culture. Korean J Med Crop Sci 23:27-36. doi:10.7783/KJMCS.2015.23.1.27  

30. Park JD (1996) Recent studies on the chemical constituents of Korean ginseng (Panax ginseng CA Meyer). Korean J Ginseng Sci 20:389-415  

31. RDA (2002) Methods of soil and plant analysis. Rural Development Administration, Suwon, Korea  

32. Reeleder RD, Capell B, Hendel J, Starratt A (2000) Influence of plant density on yield and ginsenoside levels of Panax quinquefolius L. J Herb Spices Med Plants 7:65-76. doi:10.1300/J044v07n01_09  

33. Roy RC, Grohs R, Reeleder RD (2003) A method for the classification by shape of dried roots of ginseng (Panax quinquefolius L.). Can J Plant Sci 83:955-958. doi:10.4141/P03-029  

34. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 70:1569-1578. doi:10.2136/sssaj2005.0117  

35. Schlag EM, McIntosh MS (2006) Ginsenoside content and variation among and within American ginseng (Panax quinquefolius L.) populations. Phytochemistry 67:1510-1519. doi:10.1016/j.phytochem.2006.05.028   

36. Szakiel A, Paczkowski C, Henry M (2011) Influence of environmental abiotic factors on the content of saponins in plants. Phytochem Rev 10:471-491  

37. Tewari RK, Lee SY, Hahn EJ, Paek KY (2007) Temporal changes in the growth, saponin content and antioxidant defense in the adventitious roots of Panax. Plant Biotechnol Rep 1:227-235. doi:10.1007/s11816-007-0036-1  

38. Um Y, Lee Y, Kim SC, Jeong YJ, Kim GS, Choi DW, Cha SW, Kim OT (2017) Expression analysis of ginsenoside biosynthesis-related genes in methyl jasmonate-treated adventitious roots of Panax ginseng via DNA microarray analysis. Hortic Environ Biotechnol 58:376-383. doi:10.1007/s13580-017-0041-4  

39. Wang W, Zhang ZY, Zhong JJ (2005) Enhancement of ginsenoside biosynthesis in high-density cultivation of Panax notoginseng cells by various strategies of methyl jasmonate elicitation. Appl Microbiol Biotechnol 67:752-758. doi:10.1007/s00253-004-1831-z  

40. Xia P, Guo H, Zhao H, Jiao J, Keyholos MK, Yan X, Liu Y, Liang Z (2016) Optimal fertilizer application for Panax notoginseng and effect of soil water on root rot disease and saponin contents. J Ginseng Res 40:38-46. doi:10.1016/j.jgr.2015.04.003  

41. Xu X, Hu X, Neill SJ, Fang J, Cai W (2005) Fungal elicitor induces singlet oxygen generation, ethylene release and saponin synthesis in cultured cells of Panax ginseng C. A. Meyer. Plant Cell Physiol 46:947-954. doi:10.1093/pcp/pci103  

42. Yang M, Zhang X, Xu Y, Mei X, Jiang B, Liao J, Ying Z, Zheing J, Zhao Z, et al (2015) Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax Notoginseng. PLos ONE 10:e0118555. doi:10.1371/journal.pone.0118555  

43. Yu K, Murthy HN, Hahan E, Paek K (2005) Ginsenoside production by hairy root cultures of Panax ginseng: influence of temperature and light quality. Biochem Eng J 23:53-6. doi:10.1016/j.bej.2004.07.001  

44. Yu SH, Huang HY, Korivi M, Hsu MF, Huang CY, Hou CW, Cheon CY, Kao CL, Lee RP, et al (2012) Oral Rg1 supplementation strengthens antioxidant defense system against exercise-induced oxidative stress in rat skeletal muscles. J Int Soc Sports Nutr 9:23. doi:10.1186/ 1550-2783-9-23  

45. Zhang AH, Tan SQ, Zhao Y, Lei FJ, Zhang LX (2015) Effects of total ginsenosides on the feeding behavior and two enzyme activities of Mythimna separata (Walker) larvae. Evid Based Complement Alternat Med 451828. doi:10.1155/2015/451828