Article | . 2018 Vol. 36, Issue. 5
Expression of Flavonoid and Stilbene Synthesis Genes in Grape Berries is Affected by High Temperature



Department of Horticulture and Life Science, Yeungnam University1
Apple Research Institute, National Institute of Horticultural and Herbal Science, RDA2
Department of Applied Biology, Chungnam National University3




2018.. 607:618


PDF XML




Increased temperatures caused by climate change inhibit berry skin coloration during the ripening season of grape cultivation. In this study, we analyzed the expression patterns of flavonoid synthesis genes involved in color and stilbene compound synthesis genes at the transcript level in ‘Campbell Early’ grapes subjected to different temperatures. The expression of chalcone isomerase (CHI), leucoanthocyanidin dioxygenase (LDOX), and trans-cinnamate 4-monooxygenase (CYP73A) genes increased in all temperature conditions; however, their expression was lower at 30-35°C than 25°C, and was much lower at 35°C. Indeed, the expression of most tested genes was lower at 35°C than other temperatures. Additionally, subjecting grapes to high temperatures in the initial stage of veraison significantly reduced the synthesis and accumulation of anthocyanins. Moreover, the expression of the resveratrol synthase (STS1) gene was gradually induced at all temperature treatments, but decreased at 48 h and the expression at 25°C was inhibited when compared to expression at 35°C. Expression of stilbe synthase1a-1(STS11), STS1a-2 (STS12), and STS1a-3 (STS13) genes had similar expression patterns at all temperatures, which decreased with increasing temperature and was suppressed at 35°C compared to 25°C. These results can be used to understand the response mechanisms of grapes to high temperature stress at the molecular level, as well as to provide information for grape breeding programs and viticulture to overcome obstacles caused by high temperatures associated with global climate change.



1. Ahn SY, Kim SA, Cho KS, Yun HK (2014) Expression of genes related to flavonoid and stilbene synthesis as affected by signaling chemicals and Botrytis cinerea in grapevines. Biol Plant 58:75-767. doi:10.1007/s10535-014-0437-2  

2. Ahn SY, Kim SA, Choi SJ, Yun HK (2015) Comparison of accumulation of stilbene compounds and stilbene related gene expression in two grape berries irradiated with different light sources. Hortic Environ Biotechnol 56:6-43. doi:10.1007/s13580-015-0045-x  

3. Azuma A, Yakushiji H, Koshita Y, Kobayashi S (2012) Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Planta 236:1067-1080. doi:10.1007/s00425-012-1650-x  

4. Ban Y, Honda C, Hatsuyama Y, Igarashi M, Bessho H, Moriguchi T (2007) Isolation and functional analysis of a MYB transcription factor gene that is a key regulator for the development of red coloration in apple skin. Plant Cell Physiol 48:958-970. doi:10.1093/pcp/pcm066  

5. Ban Y, Kondo S, Ubi BE, Honda C, Bessho H, Moriguchi T (2009) UDP-sugar biosynthetic pathway: contribution to cyaniding 3-galactoside biosynthesis in apple skin. Planta 230:871-881. doi:10.1007/s00425-009-0993-4  

6. Bogs J, Ebadi A, McDavid D, Robinson SP (2006) Identification of the flavonoid hydroxylases from grapevine and their regulation during fruit development. Plant Physiol 140:279-291. doi:10.1104/pp.105.073262  

7. Buttrose MS, Hale CR, Kliewer WM (1971) Effect of temperature on the composition of ‘Cabernet Sauvignon’ berries. Am J Enol Vitic 22:71-75  

8. Carbonell-Bejerano P, Santa Maria E, Torrés Perez R, Royo C, Lijavetzky D, Bravo G, Aguirreolea J, Sánchez-Díaz M, Carmen Antolí M, et al (2013) Thermotolerance responses in ripening berries of Vitis vinifera L cv Muscat Hamburg. Plant Cell Physiol 54:1200-1216. doi:10.1093/pcp/pct071  

9. Chang S, Puryear J, Cairney J (1993) A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol 11:113-116. doi:10.1007/BF02670468  

10. Chen SM, Li CH, Zhu XR, Deng YM, Sun W, Wang LS, Chen FD, Zhang Z (2012) The identification of flavonoids and the expression of genes of anthocyanin biosynthesis in the chrysanthemum flowers. Biol Plant 56:458-464. doi:10.1007/s10535-012-0069-3  

11. Chong J, Poutaraud A, Hugueney P (2009) Metabolism and roles of stilbenes in plants. Plant Sci 177:143-155. doi:10.1016/j.plantsci.2009.05.012  

12. Christie PJ, Alfenito MR, Walbot V (1994) Impact of low temperature stress on general phenylpropanoid and anthocyanin pathways: enhancement of transcript abundance and anthocyanin pigmentation in maize seedlings. Planta 194:541-549. doi:10.1007/BF00714468  

13. Coombe BG (1995) Adoption of a system for identifying grapevine growth stages. Austr J Grape Wine Res 1:104-110. doi:10.1111/ j.1755-0238.1995.tb00086.x  

14. Dercks W, Creasy LL (1989) The significance of stilbene phytoalexins in the Plasmopara viticola-grapevine interaction. Physiol Mol Plant Pathol 34:189-202. doi:10.1016/0885-5765(89)90043-X  

15. El‐Razek EA, Treutter D, Saleh MMS, El‐Shammaa M, Fouad AA, Abdel‐Hamid N, Abou‐Rawash M (2010) Effect of defoliation and fruit thinning on fruit quality of ‘Crimson Seedless’ grape. Res J Agric Biol Sci 6:289-295  

16. Ford CM, Boss PK, HΦj PB (1998) Cloning and characterization of Vitis vinifera UDP-glucose:flavonoid 3-O-glucosyltransferase, a homologue of the enzyme encoded by the maize Bronze-1 locus that may primarily serve to glucosylate anthocyanidins in vivo. J Biol Chem 273:9224-9233. doi:10.1074/jbc.273.15.9224  

17. Giordano D, Provenzano S, Ferrandino A, Vitali M, Pagliarani C, Roman F, Cardinale F, Castellarin SD, Schubert A (2016) Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Plant Physiol Biochem 101:23-32. doi:10.1016/j.plaphy.2016.01.015  

18. Hahlbrock K, Grisebach H (1979) Enzymic controls in the biosynthesis of lignin and flavonoids. Annu Rev Plant Physiol 30:105-130. doi:10.1146/annurev.pp.30.060179.000541  

19. Hahlbrock K, Scheel D (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40:347-369. doi:10.1146/annurev.pp.40.060189.002023  

20. Haselgrove L, Botting D, van Heeswijck R, Høj PB, Dry, RR Ford C, Iland PG (2000) Canopy microclimate and berry composition: The effect of bunch exposure on the phenolic composition of Vitis vinifera L. cv. Shiraz grape berries. Aust J Grape Wine Res 6:141-149. doi:10.1111/j.1755-0238.2000.tb00173.x  

21. Honda C, Kotoda N, Wada M, Kondo S, Kobayashi S, Soejima J, Zhang Z, Tsuda T, Moriguchi T (2002) Anthocyanin biosynthetic genes are coordinately expressed during red coloration in apple skin. Plant Physiol Biochem 40:955-962. doi:10.1016/S0981-9428(02)01454-7  

22. Jaakola L, Hohtola A (2010) Effect of latitude on flavonoid biosynthesis in plants. Plant Cell Environ 33:1239-1247. doi:10.1111/ j.1365-3040.2010.02154.x  

23. Kim JH (1999) The nature of flower color. JinSol Ltd., Seoul, Korea  

24. Kim SA, Ahn SY, Yun HK (2016) Transcriptome analysis of grapevine shoots exposed to chilling temperature for four weeks. Hortic Environ Biotechnol 57:161-172. doi:10.1007/s13580-0118-5  

25. Kim SA, Ahn SY, Yun HK (2017) Transcriptomic change in dormant buds of two grapevine cultivars following exposure to freezing temperature. Hortic Environ Biotechnol 58:152-161. doi:10.1007/s13580-017-0147-8  

26. Kliewer WM (1977) Influence of nitrogen, temperature, solar radiation and on coloration and composition of Emperor grapes. Am J Enol Vitic 28:96-103  

27. Kliewer WM, Torres RE (1972) Effect of controlled day and night temperatures on grape coloration. Am J Enol Vitic 23:71-77  

28. Koes R, Verweij W, Quattrocchio F (2005) Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends Plant Sci 10:236-242. doi:10.1016/j.tplants.2005.03.002  

29. Koshita Y, Askura T, Fukuda H, Tsuchida Y (2007) Nighttime temperature treatment of fruit clusters of ‘Aki Queen’ grapes during maturation and its effect on the skin color and abscisic acid content. Vitis 46:208-209  

30. Langcake P, Pryce RJ (1977) A new class of phytoalexins from grapevines. Experientia 33:151-152. doi:10.1007/BF02124034  

31. Lee JC, Tomana T, Naoki U, Ikuo K (1979) Physiological study on the anthocyanin development in grape - I. Effect of fruit temperature on the anthocyanin development in ‘Kyoho’ grape. J Korean Soc Hortic Sci 20:55-65  

32. Lee SH, Song MK, Choi WH, Lee YS, Hong ST, Jung SM, Noh JH, Nam JC (2015) Effect of the shading conditions on the photosynthesis and fruit quality of ‘Jarang’ and ‘Heukboseok’ grape at high temperature periods. J Korean Soc Int Agri 27:221-225. doi:10.12719/KSIA.2015.27.2.221  

33. Lin-Wang K, Micheletti D, Palmer J, Volz R, Lozano L, Espley R, Hellens RP, Chagnè D, Rowan DD, et al (2011) High temperature reduces apple fruit colour via modulation of the anthocyanin regulatory complex. Plant Cell Environ 34:1176-1190. doi:10.1111/ j.1365-3040.2011.02316.x  

34. Matsumoto K, Kim BK, Oahn VT, Seo JH, Yoon HG, Park MK, Hwang YS, Chun JP (2007) Comparison of sugar compositions and quality parameters during berry ripening between grape cultivars. Korean J Hortic Sci Technol 25:230-234  

35. Moon JS, Hur YY, Jung SM, Choi YJ, Nam JC, Park JG, Koh SW (2017) Transcript profiling of native Korean grapevine species Vitis flexuosa exposed to dehydration and rehydration treatment. Hortic Environ Biotechnol 58:66-77. doi:10.1007/s13580-017-0164-x  

36. Mori K, Saito H, Yamamoto NG, Kitayama M, Kobayashi S, Sugaya S, Gemma H, Hashizume K (2005a) Effects of abscisic acid treatment and night temperatures on anthocyanin composition in ‘Pinot Noir’ grapes. Vitis 44:161-165  

37. Mori K, Sugaya S, Gemma H (2005b) Decreased anthocyanin biosynthesis in grape berries grown under elevated night temperature condition. Sci Hortic 105:319-330. doi:10.1016/j.scienta.2005.01.032  

38. Movahed N, Pastore C, Cellini A, Allegro G, Valentini G, Zononi S, Cavallini E, D’Inca E, Tornielli GB, et al (2016) The grapevine VviPrx31 peroxidase as a candidate gene involved in anthocyanin degradation in ripening berries under high temperature. J Plant Res129:513-526. doi:10.1007/s10265-016-0786-3  

39. Park SR, Paik JH, Ahn MS, Park JW, Yoon YJ (2010) Biosynthesis of plant-specific flavones and flavonols in Streptomyces venezuelae. J Microbiol Biotechnol 20:1295-1299. doi:10.4014/jmb.1005.05038  

40. Reay PF (1999) The role of low temperature in the development of the red blush on apple ‘Grammy Smith’. Sci Hortic 79:113-119. doi:10.1016/S0304-4238(98)00197-6  

41. Reisch BI, Owens CL, Cousins PS (2012) Grape. In ML Badenes, DH Byme, eds, Fruits breeding: Handbook of plant breeding (II). Springer, New York, USA, pp 225-262. doi:10.1007/978-1-4419-0763-9_7  

42. Richter H, Pezet R, Viret O, Gindro K (2006) Characterization of 3 new partial stilbene synthase genes out of over 20 expressed in Vitis vinifera during the interaction with Plasmopara viticola. Physiol Mol Plant Pathol 67:248-260. doi:10.1016/j.pmpp.2006.03.001  

43. Rienth M, Torregrosa L, Luchaire N, Chatbanyong R, Lecourieux D, Kelly MT, Romieu C (2014) Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (Vitis vinifera) fruit. BMC Plant Biol 14:108. doi:10.1186/1471-2229-14-108  

44. Schröder G, Brown JWS, Schröder J (1988) Molecular analysis of resveratrol synthase cDNA, genomic clones and relationship with chalcone synthase. Eur J Biochem 172:161-169. doi:10.1111/j.1432-1033.1988.tb13868.x  

45. Spayd SE, Tarara JM, Mee DL, Ferguson JC (2002) Separation of sunlight and temperature effects on the composition of Vitis vinifera cv. Merlot berries. Am J Enol Vitic 53:171-182  

46. Sugiura T, Kuroda H, Sugiura H (2007) Influence of the current state of global warming on fruit tree growth in Japan. Hortic Res Jpn 6:257-263. doi:10.2503/hrj.6.257  

47. Tomana T, Utsunomiya N, Kataoka I (1979) The effect of environmental temperature on fruit ripening on tree. II. The effect of temperatures around whole vines and clusters on the coloration of ‘Kyoho’ grapes. J Jpn Soc Hortic Sci 48:261-266 (in Japanese with English summary). doi:10.2503/jjshs.48.261  

48. Ubi BU, Honda C, Bessho H, Kondo S, Wada M, Kobayashi S, Moriguchi T (2006) Expression analysis of anthocyanin biosynthetic genes in apple skin: effect of UV-B and temperature. Plant Sci 170:571-578. doi:10.1016/j.plantsci.2005.10.009  

49. Wang W, Wang HL, Wan SB, Zhang JH, Zhang P, Zhan JC, Huang WD (2012) Chalcone isomerase in grape vine: gene expression and localization in the developing fruit. Biol Plant 56:545-550. doi:10.1007/s10535-011-0216-2  

50. Wiese W, Vorna B, Krause E, Kindl H (1994) Structural organization and differential expression of three stilbene synthase genes located on a 13 kb grapevine DNA fragment. Plant Mol Biol 26:667-677. doi:10.1007/BF00013752  

51. Yamane T, Jeong ST, Goto‐Yamamoto N, Koshita Y, Kobayashi S (2006) Effects of temperature on anthocyanin biosynthesis in grape berry skins. Am J Enol Vitic 57:54-59  

52. Yamane T, Shibayama K, Hamana Y, Yakushiji H (2009) Response of container-grown girdled grapevines to short-term water-deficit stress. Am J Enol Vitic 60:50-56  

53. Zhang D, Yu B, Bai J, Qian M, Shu Q, Su J, Teng Y (2012) Effects of high temperatures on UV-B/visible irradiation induced postharvest anthocyanin accumulation in ‘Yunhongli No. 1’ (Pyrus pyrifolia Nakai) pears. Sci Hortic 134:53-59. doi:10.1016/j.scienta.2011.10.025  

54. Zheng Y, Tian L, Liu H, Pan Q, Zhan J, Huang W (2009) Sugars induce anthocyanin accumulation and flavanone 3‐hydroxylase expression in grape berries. Plant Growth Regul 58:251-260. doi:10.1007/s10725-009-9373-0