Article | . 2018 Vol. 36, Issue. 1
Variation inGlucosinolateand PolyphenolLeveland Level of Peroxisome Proliferator Activated Receptorγ(PPARγ)Expression in anEthanolExtract of Highland Kimchi Cabbage



Highland Agriculture Research Institute, National Institute Crop Science1
Department of Horticulture, Chonbuk National University2
Graduate School of International Studies, Seoul National University3




2018.. 128:139


PDF XML




Variations of polyphenol and glucosinolate levels, and growth characteristics of 40 cultivars of Kimchi cabbage cultivated in highlands were analyzed, in combination with the level of per-oxisome proliferator activated receptorγ (PPARγ) expression in ethanol extract from leaves. In addition, the effect of sulfur and nitrogen supply on the sulfur and glucosinolate content was investigated. Differences in the levels of total polyphenol and glucosinolate could be detected in the different cultivars of Kimchi cabbage. Glucosinolate epiprogoitrin was detected in small amounts or not detected, and the level of glucosinolate progoitrin showed clear-differences in different cultivars. The anti-carcinogenic glucosinolate gluconasturttin level in Kimchi cabbage (‘Asiaib-ssam’) leaves was higher than 6.85 μmol·g-1. Sulfur and glucosinolate levels in Kimchi cabbage leaves were dependent on the sulfur supply. The levels of the aliphatic glucosinolates progoitrin, gluconapin and glucobrassicanapin generally decreased with the increase of nitrogen supply, but the indolyl glucosinolate glucobrassicin increased. The total polyphenol levels in Kimchi cabbage leaves ranged from 1.5 to 2.3 mg GAE/g. Leaf ethanol extracts of 40 cultivars of Kimchi cabbage cultivated in highlands, activated the expression of PPARγ 2-4 fold when compared with the negative control.



1. Bjeldanes LF, Kim JY, Groose KR, Bartholomew JC, Bradfield CA (1991) Aromatic hydrocarbon responsiveness-receptor agonists generated from indole-3-carbinol in vitro and in vivo: Comparisons with 2,3,7,8-tetrachlorodibenzo-p-dioxin. Proc Natl Acad Sci USA 88:9543-9547. doi:org/10.1073/pnas.88.21.9543  

2.   

3. Chun JH, Park SH, Kim SJ (2015) Glucosinolate and carotenoid contents in lines of Brassica plants. Abstracts of Korean J Environ Agric, p 301  

4. Evans RM, Barish GD, Wang YX (2004) PPARs and the complex journey to obesity. Nat Med 10:355-361. doi:org/10.1038/nm1025  

5. Fahey WJ, Azlcmann TA, Talalay P (2001) The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5-51. doi:org/10.1016/S0031-9422(00)00316-2  

6. Fenwick GR, Heaney RK (1983) Glucosinolates and the breakdown products in cruciferous crops, foods and feeding stuffs. Food Chem 11:249-271. doi:org/10.1016/0308-8146(83)90074-2  

7. Fenwick GR, Heaney RK, Mullin WJ (1983) Glucosinolates and their breakdown products in food and food plants. Crit Rev Food Sci Nutr 18:123-201. doi:org/10.1080/10408398209527361  

8. Grubb CD, Abel S (2006) Glucosinolate metabolism and its control. Trends Plant Sci 11:89-100. doi:org/10.1016/j.tplants.2005.12.006  

9. Hayes JD, Kelleher MO, Eggleston IM (2007) Anticarcinogenic dffects of glucosinolate breakdown products. In B Akesson, P Mercke, eds, Dietary vitamins, polyphenols, selenium and probiotics: Biomarkers of exposure and mechanisms of anticarcinogenic action. ECNIS, Poland  

10. Hayes JD, Kelleher MO, Eggleston IM (2008) The cancer chemopreventive actions of phytochemicals derived from glucosinolates. Eur J Nutr 47:73-88. doi:org/10.1007/s00394-008-2009-8  

11. Hong EY, Kim SJ, Kim GH (2011) Identification and quantitative determination of glucosinolates in seeds and edible parts of Korean Chinese cabbage. Food Chem 128:1115-1120. doi:org/10.1016/j.foodchem.2010.11.102  

12. Jeong SH (2014) Study on PPAR–dependent adipogenesis regulation by testosterone using transient transfection assays. Korea Inst Inf Commun Eng 18:482-487. d oi:org/10.6109/jkiice.2014.18.2.482  

13. Jo JS, Bhandari SR, Kang GH, Lee JG (2016) Comparative analysis of individual glucosinolates, phytochemicals, and antioxidant activities in broccoli breeding lines. Hortic Environ Biotechnol 57:392-403. doi:org/10.1007/s13580-016-0088-7  

14. Kampa M, Hatzoglou A, Notas G, Damianaki A, Gemetzi EC, Kouroumalis E, Martin PM, Castanas E (2000) Wine antioxidant polyphenols inhibit the proliferation of human prostate cancer cell lines. Nutr Cancer 37:223–233. d oi:org/10.1207/S153 27914NC372_16  

15. Kang JY, Ibrahim KE, Juvik JA (2006) Genetic and environmental variation of glucosinolate content in Chinese cabbage. HortScience 41:1382-1385  

16. Khateeb J, Gantman A, Kreitenberg AJ, Aviram M, Fuhrman B (2009) Paraoxonase 1 (PON1) expression in hepatocytes is upregulated by pomegranate polyphenols: A role for PPAR-γ pathway. Atherosclerosis 208:119-125  

17. Kim HJ (2013) Pulsatilla koreana ethanol extract suppress adipocyte differentiation and adipogenesis via down-regulation of PPAR-γ and C/EBPs. MS Thesis, Wonkwang University, Iksan, Korea  

18. Kim JK, Chu SM, Kim SJ, Lee DJ, Lee SY, Lim SW, Ha SH, Kweon SJ, Cho HS (2010) Variation of glucosinolates in vegetable crops of Brassica rapa L. ssp pekinensis. Food Chem 119:423-428. doi:org/10.1016/j.foodchem.2009.08.051  

19. Kim KD, Yun MK, Park SH, Kang HJ, Suh HD (2013) Kimchi cabbage. In Korean Society for Horticultural Science (KSHS), ed, Development History of Korean Horticulture. KSHS, Wanju, Korea pp 22-27  

20. Lampe JW, Peterson S (2002) Brassica, biotransformation and cancer risk: Genetic polymorphisms alter the preventive effects of cruciferous vegetables. J Nutr 132:2991-2994  

21. Langouet S, Furge LL, Kerriguy N, Nakamura K, Guillouzo A, Guengerich FP (2000) Inhibition of human cytochrome P450 enzymes by 1,2-dithiole-3-thione, oltipraz and its derivatives, and sulforaphane. Chem Res Toxicol 13:245-252. doi:org/10.1021/tx990189w  

22. Lee GJ, Heo JW, Jung CR, Kim HH, Jo JS, Lee JG, Lee GJ, SY Nam, Hong EY (2016) Effects of artificial light sources on growth and glucosinolate contents of hydrophonically grown kale in plant factory. Protected Hortic Plant Fac 25:77-82. doi:org/10.12791/KSBEC.2016.25.2.77  

23. Lee JE, Wang PJ, Kim GY, Kim SH, Park SY, Hwang YS, Lim YP, Lee EM, Ham IK, et al (2010) Effects of soil pH on nutritional and functional components of Chinese cabbage (Brassica rapa ssp. campestris). Korean J Hortic Sci Technol 28:353-362  

24. Lee JG, Kim JS (2010) Variation of glucosinolate content in the root of susceptible and resistant Chinese cabbage cultivars during development of clubroot disease. Korean J Hortic Sci Technol 28:200-208  

25. Lee MK, Chun JH, Byeon DH, Chung SO, Park SU, Park SH, Arasu MV, Al-Dhabi NA, Lim YP, et al (2014) Variation of glucosinolates in 62 varieties of Chinese cabbage (Brassica rapa L. ssp. pekinensis) and their antioxidant activity. LWT-Food Sci Technol 58:93-101. doi: org/10.1016/j.lwt.2014.03.001  

26. Machev NP, Schraudolf H (1978) Thiocyanate as predecessor of asparagine in Sinapis alba L. Plant Physiol 4:26-33  

27. Mithen RF, Dekker M, Verkerk R, Rabot S, Johnson IT (2000) The nutritional significance, biosynthesis and bioavailability of glucosinolates in human foods. J Sci Food Agric 80:967-984. doi:org/10.1002/(SICI)1097-0010(20000515)80:7<967::AID-JSFA597>3.0.CO;2-V  

28. Omirou MD, Papadopoulou KK, Papastylianou I, Constantinou M, Karpouzas DG, Asimakopoulos I, Ehaliotis C (2009) Impact of nitrogen and sulfur fertilization on the composition of glucosinolates in relation to sulfur assimilation in different plant organs of broccoli. J Agric Food Chem 57:9408–9417. doi:org/10.1021/jf901440n  

29. Park JH, Lee SJ, Kim BR, Woo ET, Lee JS, Han EH, Lee YH, Park YD (2011) Isolation of myrosinase and glutathione S-transferase genes and transformation of these genes to develop phenylethylisothiocyanate enriching Chinese cabbage. Korean J Hortic Sci Technol 29:623-632  

30. Peschel W, Sanchez-Rabaneda F, Diekmann W, Plescher A, Gartzia I, Jimenez D, Lamuela-Raventos R, Buxaderas S, Codina C (2006) An industrial approach in the search of natural antioxidants from vegetable and fruit wastes. Food Chem 97:137-150. doi:.org/10.1016/j.foodchem.2005.03.033  

31. Roy M, Takenaka M, Isobe S, Tsushida T (2007) Antioxidant potential, antiproliferative activities, and phenolic content in water-soluble fractions of some commonly consumed vegetables: Effects of thermal treatment. Food Chem 103:106–114. doi:org/10.1016/j.foodchem.2006.08.002  

32. SAS Institute Inc (2015) Release 9.2. SAS Institute, Cary, NC, USA  

33. Schnug E (1990) Glucosinolate–fundamental, environmental and agricultural aspects. In H Rennenberg, C Brunold, LJ de Kok, I Stulen, eds, Sulfur nutrition and sulfur assimilation in higher Sulfur Nutrition and Sulfur Assimilation in Higher Plant: Fundamental, Environmental and Agricultural Aspects, SPB Academic Publishing, Hague, The Netherlands, pp 97-106  

34. Schrader C, Graeser AC, Huebbe P, Wagner AE, Rimbach G (2012) Allyl isothiocyanate as a potential inducer of paraoxonase-1-studies in cultured hepatocytes and in mice. IUBMB Life 64:162-168. doi:org/10.1002/iub.587  

35. Seong GU, Hwang IW, Chung SK (2016) Antioxidant capacities and polyphenolics of Chinese cabbage (Brassica rapa L. ssp. pekinensis) leaves. Food Chem 199:612-618. doi:org/10.1016/j.foodchem.2015.12.066  

36. Spiegelman BM (1998) PPAR-gamma: Adipogenic regulator and thiazolidinedione receptor. Diabetes 47:507-514. doi:org/10.2337/diabetes.47.4.507  

37. Underhill EW (1967) Biosynthesis of mustard oil glucosides: Conversion of phenylacetaldehyde oxime and 3-phenylpropionaldehyde oxime to glucotropaeolin and gluconasturtiin. Eur J Biochem 2:61-63. doi:org/10.1111/j.1432-1033.1967.tb00106.x  

38. Verhoeven DT, Verhagen H, Goldbohm RA, van den Brandt PA, van Poppel G (1997) A review of mechanisms underlying anticarcinogenicity by Brassica vegetables. Chem Biol Interact 103:79–129. doi:org/10.1016/S0009-2797(96)03745-3  

39. Wang QM, Xu CJ, Yuan JY, Guo DP (2006) Effect of different preharvest treatments on glucoraphanin content and quinone reductase inducer activity in broccoli florets. Abstracts 27 International Horticultural Congress & Exhibition 8, p 77  

40. Wang X, Jin Q, Wang T, Huang J, Xia Y, Yao L, Wang X (2012) Screening of glucosinolate-degrading strains and its application in improving the quality of rapeseed meal. Ann Microbiol 62:1013-1020. doi:org/10.1007/s13213-011-0341-3  

41. Xiao B (2012) Design and synthesis of PPARγ agonists based on fungal phthalide. MS Thesis, Pusan National University, Korea