Article | . 2018 Vol. 36, Issue. 1
Characterization of IQ Domain Gene Homologs as Common Candidate Genes for Elongated Fruit Shape inCucurbits

Department of Horticultural Bioscience, Pusan National University1
Life and Industry Convergence Research Institute, Pusan National University2

2018.. 85:97


The SUN gene is responsible for an elongated fruit shape in tomato and belongs to the IQ domain (IQD) gene family, which is involved in growth and development in plants. In the present study, IQD gene homologs were evaluated for their roles in determining fruit shape in cucurbit crops. A total of 151 IQD homologs and their chromosomal locations in Arabidopsis, tomato, and three cucurbit species, watermelon, melon, and cucumber, were compared based on their genomic information. A phylogenetic dendrogram of these IQD homologs revealed putative orthologous and paralogous relationships among these genes, and showed that previously reported candidate fruit shape IQD genes in watermelon (ClSUN8), melon (CmSUN14), and cucumber (CsSUN2) were clustered under the same node with a similarity coefficient of 0.97. A comparison of the physical locations of the IQD homologs with fruit shape QTLs in genetic maps indicated that ClSUN8, CmSUN14, and CsSUN2 were co-localized with the major QTLs for the fruit shape index (FSI). This co-localization further indicated that minor QTLs for FSI were also associated with the IQD gene family. We used early developmental stages of immature fruits to conduct a morphological assay and characterize ClSUN8 in watermelon. Histological analysis indicated that elongated or round fruit shape is determined at the early stage of ovary formation, at least earlier than -4 days after fertilization (-4 DAF), and fruit elongation is due to increased cell division in the longitudinal direction. Quantitative RT-PCR showed that the highest expression of ClSUN8 occurred at -4 days after fertilization and gradually decreased; however, there was no direct relationship between the gene expression level and fruit shape. RACE-PCR revealed a non-synonymous SNP between the ClSUN8 alleles of elongated- and round-fruited watermelon accessions, suggesting that the SNP might be a causative mutation affecting fruit shape.

1. Abel S, Savchenko T, Levy M (2005) Genome-wide comparative analysis of the IQD gene families in Arabidopsis thaliana and Oryza sativa. BMC Evol Biol 5:72. doi:10.1186/1471-2148-5-72  

2. Bähler M, Rhoads A (2002) Calmodulin signaling via the IQ motif. FEBS Lett 513:107-113. doi:10.1016/S0014-5793(01)03239-2  

3. Bo K, Ma Z, Chen J, Weng Y (2015) Molecular mapping reveals structural rearrangements and quantitative trait loci underlying traits with local adaptation in semi-wild Xishuangbanna cucumber (Cucumis sativus L. var. xishuangbannanesis Qi et Yuan). Theor Appl Genet 12:25-39. doi:10.1007/s00122-014-2410-z  

4. Bürstenbinder K, Savchenko T, Müller J, Adamson AW, Stamm G, Kwong R, Zipp BJ, Dinesh DC, Abel S (2013) Arabidopsis calmodulinbinding protein IQ67-domain 1 localizes to microtubules and interacts with kinesin light chain-related protein-1. J Biol Chem 288:1871-1882. doi:10.1074/jbc.M112.396200  

5. Cheng Y, Luan F, Wang X, Gao P, Zhu Z, Liu S, Baloch AM, Zhang YS (2016) Construction of a genetic linkage map of watermelon (Citrullus lanatus) using CAPS and SSR markers and QTL analysis for fruit quality traits. Sci Hortic 202:25-31. doi:10.1016/j. scienta.2016.01.004  

6. Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800-804. doi:10.1038/ng.144  

7. Díaz A, Fergany M, Formisano G, Ziarsolo P, Blanca J, Fei ZJ, Staub JE, Zalapa JE, Cuevas HE, et al (2011) A consensus linkage map for molecular markers and Quantitative Trait Loci associated with economically important traits in melon (Cucumis melo L.). BMC Plant Biol 11:111. doi:10.1186/1471-2229-11-111  

8. Díaz A, Zarouri B, Fergany M, Eduardo I, Álvarez JM, Picó B, Monforte AJ (2014) Mapping and introgression of QTL involved in fruit shape transgressive segregation into “Piel de Sapo” melon (Cucucumis melo L.). PLoS ONE 9:e104188. doi:10.1371/journal.pone.0104188  

9. Eduardo I, Arús P, Monforte A J, Obando J, Fernández-Trujillo JP, Martínez JA, Alarcón AL, Álvarez JM, van der Knaap E (2007) Estimating the genetic architecture of fruit quality traits in melon using a genomic library of near isogenic lines. J Am Soc Hortic Sci 132:80-89  

10. Feng L, Chen Z, Ma H, Chen X, Li Y, Wang Y, Xiang Y (2014) The IQD gene family in soybean: Structure, phylogeny, evolution and expression. PLoS ONE 9:e110896. doi:10.1371/journal.pone.0110896  

11. Garcia-Mas J, Benjak A, Sanseverino W, Bourgeois M, Mir G, González VM, Henaff E, Camara F, Cozzuto L, et al (2012) The genome of melon (Cucumis melo L.). Proc Natl Acad Sci USA 109:11872-11877. doi:10.1073/pnas.1205415109  

12. Harel-Beja R, Tzuri G, Portnoy V, Lotan-Pompan M, Lev S, Cohen S, Dai N, Yeselson L, Meir A, et al (2010) A genetic map of melon highly enriched with fruit quality QTLs and EST markers, including sugar and carotenoid metabolism genes. Theor Appl Genet 121:511- 533. doi:10.1007/s00122-010-1327-4  

13. Hoeflich KP, Ikura M (2002) Calmodulin in action: diversity in target recognition and activation mechanisms. Cell 108:739-742. doi:10.1016/S0092-8674(02)00682-7  

14. Huang ZJ, van Houten J, Gonzalez G, Xiao H, van der Knaap E (2013) Genome-wide identification, phylogeny and expression analysis of SUN, OFP and YABBY gene family in tomato. Mol Genet Genomics 288:111-129. doi:10.1007/s00438-013-0733-0  

15. Jin BK, Park GR, Choi YM, Nho JJ, Son BG, Park YH (2017) Evaluation of DNA markers for fruit-related traits and genetic relationships based on single sequence repeats in watermelon accessions. Korean J Hortic Sci Technol 35:108-120  

16. Jones DT, Taylor WR, Thornton JM (1992) The rapid generation of mutation data matrices from protein sequences. Comput Appl Biosci 8:275-282. doi:10.1093/bioinformatics/8.3.275  

17. Kim KH, Hwang JH, Han DY, Park M, Kim S, Choi DI, Kim YJ, Lee GP, Kim ST, et al (2015) Major quantitative trait loci and putative candidate genes for powdery mildew resistance and fruit-related traits revealed by an intraspecific genetic map for watermelon (Citrullus lanatus var. lanatus). PLoS ONE 10:e0145665. doi:10.1371/journal.pone.0145665  

18. Kong QS, Yuan JX, Gao LY, Zhao S, Jiang W, Huang Y, Bie ZL (2014) Identification of suitable reference genes for gene expression normalization in qRT-PCR analysis in watermelon. PLoS ONE 9: e90612. doi:10.1371/journal.pone.0090612  

19. Liu J, van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302-13306. doi:10.1073/pnas.162485999  

20. Liu S, Gao P, Zhu Q, Luan F, Davis AR, Wang X (2016) Development of cleaved amplified polymorphic sequence markers and a CAPSbased genetic linkage map in watermelon (Citrullus lanatus [Thunb.] Matsum. et. Nakai) constructed using whole-genome re-sequencing data. Breeding Sci 66:244-259. doi:10.1270/jsbbs.66.244  

21. Ma H, Feng L, Chen Z, Chen X, Zhao H, Xiang Y (2014) Genome-wide identification and expression analysis of the IQD gene family in Populus trichocarpa. Plant Sci 229:96-110. doi:10.1016/j.plantsci.2014.08.017  

22. Monforte AJ, Oliver M, Gonzalo MJ, Alvarez JM, Dolcet-Sanjuan R, Arús P (2004) Identification of quantitative trait loci involved in fruit quality traits in melon (Cucumis melo L.). Theor Appl Genet 108:750-758. doi:10.1007/s00122-003-1483-x  

23. Pan YP, Liang XJ, Gao ML, Liu HQ, Meng HW, Weng YQ, Cheng ZH (2016) Round fruit shape in WI7239 cucumber is controlled by two interacting quantitative trait loci with one putatively encoding a tomato SUN homolog. Theor Appl Genet 130: 573-586. doi: 10.1007/s00122-016-2836-6  

24. Paris MK, Zalapa JE, McCreight JD, Staub JE (2008) Genetic dissection of fruit quality components in melon (Cucumis melo L.) using a RIL population derived from exotic x elite US Western Shipping germplasm. Mol Breed 22:405-419. doi:10.1007/s11032-008-9185-3  

25. Périn C, Hagen L, Giovinazzo N, Besombes D, Dogimont C, Pitrat M (2002) Genetic control of fruit shape acts prior to anthesis in melon (Cucumis melo L.). Mol Genet Genomics 266:933-941. doi:10.1007/s00438-001-0612-y  

26. Pitrat M (2008). Melon. In J Prohens, F Nuez, eds, Handbook of Plant Breeding, Vol.Ⅰ: Vegetables. Springer, New York, pp 283-315.  

27. Ren Y, McGregor C, Zhang Y, Gong G, Zhang H, Guo S, Sun HH, Cai WT, Zhang J, Xu Y (2014) An integrated genetic map based on four mapping populations and quantitative trait loci associated with economically important traits in watermelon (Citrullus lanatus). BMC Plant Biol 14:33. doi:10.1186/1471-2229-14-33  

28. Rodríguez GR, Muños S, Anderson C, Sim SC, Michel A, Causse M, Gardener BBM, Francis D, van der Knaap E (2011) Distribution of SUN, OVATE, LC, and FAS in the tomato germplasm and the relationship to fruit shape diversity. Plant Physiol 156:275-285. doi:10.1104/pp110.167577  

29. Sadrnia H, Rajabipour A, Jafary A, Javadi A, Mostofi Y (2007) Classification and analysis of fruit shapes in long type watermelon using image processing. Int J Agric Biol 9:68-70.  

30. Sandlin K, Prothro J, Heesacker A, Khalilian N, Okashah R, Xiang W, Bachlava E, Caldwell DG, Taylor CA, et al (2012) Comparative mapping in watermelon [Citrullus lanatus (Thunb.) Matsum. et Nakai]. Theor Appl Genet 125:1603-1618. doi.:10.1007/s00122-012-1938-z  

31. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731-2739. doi:10.1093/molbev/msr121  

32. Thompson JD, Gibson T J, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876-4882. doi:10.1093/nar/25.24.4876  

33. Wang T, Yue J, Wang X, Xu L, Li LB, Gu XP (2016) Genome-wide identification and characterization of the Dof gene family in moso bamboo (Phyllostachys heterocycla var. pubescens). Genes Genom 38:733-745. doi:10.1007/s13258-016-0418-2  

34. Weng Y, Colle M, Wang Y, Yang L, Rubinstein M, Sherman A, Ophir R, Grumet R (2015) QTL mapping in multiple populations and development stages reveals dynamic quantitative trait loci for fruit size in cucumbers of different market classes. Theor Appl Genet 128:1747-1763. doi:10.1007/s00122-015-2544-7  

35. Wu S, Xiao H, Cabrera A, Meulia T, van der Knaap E (2011) SUN regulates vegetative and reproductive organ shape by changing cell division patterns. Plant Physiol 157:1175-1186. doi:10.1104/pp.111.181065  

36. Xiao H, Jiang N, Schaffner E, Stockinger EJ, van der Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527-1530. doi:10.1126/science.1153040  

37. Yuan XJ, Li XZ, Pan JS, Wang G, Jiang S, Li XH, Deng SL, He HL, Si MX, et al (2008) Genetic linkage map construction and location of QTLs for fruit-related traits in cucumber. Plant Breeding 127:180-188. doi:10.1111/j.1439-0523.2007.01426.x