Article | . 2018 Vol. 36, Issue. 1
Air Temperature and Humidity Affect Petunia Ornamental Value

Department of Environmental Horticulture, University of Seoul1
National Science Research Institute, University of Seoul2

2018.. 10:19


Petunias are a representative bedding plant known for their tolerance for hot and dry climates. However, petunia growth and ornamental value as bedding plants in a year-round hot but humid climate such as that in tropical regions is not well studied. In order to evaluate the adaptability of petunias in hot and humid climates, petunia ‘Madness Red’ was treated with 50% relative humidity (RH) at an air temperature (AT) of 25°C, and with 80% RH at 25°C, 30°C, and 35°C AT. The results showed that at 25°C AT, 80% RH briefly delayed flowering but partially improved shoot growth and ornamental value variables such as plant weight, leaf area, and flower size and longevity compared to 50% RH. At 80% RH, increased AT significantly promoted flowering time and number, but also caused a slight decline in plant development parameters like biomass, flower size, and flower color. Conversely, a rapid decline in plant development was observed at 35°C AT only, indicating heat damage symptoms such as anatomical distortion of the leaf surface. The ornamental value of bedding plants was determined by flower production and longevity during the landscaping period. Petunia ornamental value was optimal at 30°C AT, even though 25°C AT is generally reported to be suitable for plant development in bedding petunias. These results indicate that humid conditions improve the high temperature adaptability of ornamental value in petunia ‘Madness Red’ which can thus be used as a street landscaping plant in tropical regions.

1. Aliniaeifard S, van Meeteren U (2014) Natural variation in stomatal response to closing stimuli among Arabidopsis thaliana accessions after exposure to low VPD as a tool to recognize the mechanism of disturbed stomatal functioning. J Exp Bot 65:6529-6542. doi:10.1093/jxb/eru370  

2. Aliniaeifard S, van Meeteren U (2016) Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Sci Hortic 205:84-89. doi:10.1016/j.scienta.2016.04.025  

3. Arve LE, Kruse OMO, Tanino KK, Olsen JK, Futsæther C, Torre S (2015). Growth in continuous high air humidity increases the expression of CYP707A-genes and inhibits stomatal closure. Environ Exper Bot 115:11-19. doi:10.1016/j.envexpbot.2015.02.004  

4. Arve LE, Terfa MT, Gislerød HR, Olsen JE, Torre S (2013) High relative air humidity and continuous light reduce stomata functionality by affecting the ABA regulation in rose leaves. Plant Cell Environ 36:382-392. doi:10.1111/j.1365-3040.2012.02580.x  

5. Barker JC, Welles GWH, van Uffelen JAM (1986) The effects of day and night humidity on yield and quality of glasshouse cucumbers. J Hortic Sci 62:361-368  

6. Blanchard MG, Runkle ES (2011) Quantifying the thermal flowering rates of eighteen species of annual bedding plants. Sci Hortic 128:30-37. doi:10.1016/j.scienta.2010.12.010  

7. Codarin S, Galopin G, Chasseriaux G (2006) Effect of air humidity on the growth and morphology of Hydrangea macrophylla L. Sci Hortic 108:303-309. doi:10.1016/j.scienta.2006.01.036  

8. Crawford AJ, MacLachlan DH, Hetherington AM, Franklin KA (2012) High temperature exposure increases plant cooling capacity. Curr Biol 22:396-397. doi:10.1016/j.cub.2012.03.044  

9. Fanourakis D, Heuvelink E, Carvalho SMP (2013) A comprehensive analysis of the physiological and anatomical components involved in higher water loss rates after leaf development at high humidity. J Plant Physiol 170:890-898. doi:10.1016/j.jplph.2013.01.013  

10. Kim JK, Kim SH, Yim YJ, Seo HH (2006) Anatomical feature, sugar, carbohydrate, and hormone content of normal and abnormal floral buds in ‘Niitaka’ pear trees. Korean J Hortic Sci Technol 24:354-358  

11. Lai YS, Yamagishi M, Suzuki T (2011) Elevated temperature inhibits anthocyanin biosynthesis in the tepals of an Oriental hybrid lily via the suppression of LhMYB12 transcription. Sci Hortic 132:59-65. doi:10.1016/j.scienta.2011.09.030  

12. Maxwell K, Johnson GN (2000) Chlorophyll fluorescence – a practical guide. J Exp Bot 51:659-668. doi:10.1093/jexbot/51.345.659  

13. Mortensen LM (2000) Effect of air humidity on growth, flowering, keeping quality and water relations of four short-day greenhouse species. Sci Hortic 86:299-310. doi:10.1016/S0304-4238(00)00155-2  

14. Mortensen LM, Ottosen CO, Gislerød HR (2001) Effects of air humidity and K:Ca ratio on growth, morphology, flowering and keeping quality of pot roses. Sci Hortic 90:131-141. doi:10.1016/S0304-4238(00)00251-X  

15. Murphy MRC, Jordan GJ, Brodribb TJ (2013) Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant Cell Environ 37:124-131. doi:10.1111/pce.12136  

16. Nejad AR, van Meeteren U (2005) Stomatal response characteristics of Tradescantia virginiana grown at high relative air humidity. Physiol Plant 125:324-332. doi:10.1111/j.1399-3054.2005.00567.x  

17. Nejad AR, van Meeteren U (2007) The role of abscisic acid in disturbed stomatal response characteristics of Tradescantia virginiana during growth at high relative humidity. J Exp Bot 58:627-636. doi:10.1093/jxb/erl234  

18. Niu G, Heins RD, Cameron A, Carlson WH (2000) Day and night temperatures, daily light integral, and CO2 enrichment affect growth and flower development of pansy (Viola ×wittrockiana). J Am Soc Hortic Sci 125:436-441  

19. Park YG, Muneer S, Soundararajan P, Manivnnan A, Jeong BR (2016) Light quality during night interruption affects morphogenesis and flowering in Petunia hybrida, a qualitative long-day plant. Hortic Environ Biotechnol 57:371-377. doi:10.1007/s13580-016-0071-3  

20. Shin HK, Lieth JH, Kim SH (2001) Effects of temperature on leaf area and flower size in rose. Acta Hort 547:185-191. doi:10.17660/ Acta Hortic.2001.547.22  

21. Shvarts M, Weiss D, Borochov A (1997) Temperature effects on growth, pigmentation and post-harvest longevity of petunia flowers. Sci Hortic 69:217-227. doi:10.1016/S0304-4238(97)00015-0  

22. Stehmann JR, Lorenz-Lemke AP, Freitas LB, Semir J (2009) The genus Petunia. In T Gerats, J Strommer eds, Petunia. Evolutionary, Developmental and Physiological Genetics. Springer, NY, pp 1-28. doi:10.1007/978-0-387-84796-2_1  

23. Torre S, Fjeld T (2001) Water loss and postharvest characteristics of cut roses grown at high or moderate relative air humidity. Sci Hortic 89:217-226. doi:10.1016/S0304-4238(00)00229-6  

24. Torre S, Fjeld T, Gislerød HR, Moe R (2003) Leaf anatomy and stomatal morphology of greenhouse roses grown at moderate or high air humidity. J Am Soc Hortic Sci 128:598-602  

25. USDA (2016) Floriculture Crop 2015 Summary  

26. Vaid TM, Runkle ES (2013) Developing flowering rate models in response to mean temperature for common annual ornamental crops. Sci Hortic 161:5-23. doi:10.1016/j.scienta.2013.06.032  

27. Warner RM, Erwin JE (2005) Prolonged high temperature exposure and daily light integral impact growth and flowering of five herbaceous ornamental species. J Am Soc Hortic Sci 130:219-325  

28. Whitman CM, Heins RD, Cameron AC, Carlson WH (1997). Cold treatment and forcing temperature influence flowering of Campanula carpatica ‘Blue Clips’. HortScience 32:861-865  

29. Yamagishi M, Shimoyamada Y, Nakatsuka T, Masuda K (2010) Two R2R3-MYB genes, homologs of petunia AN2, regulate anthocyanin biosynthesis in flower tepals, tepal spots and leaves of Asiatic hybrid lily. Plant Cell Physiol 51:463-474. doi:10.1093/pcp/pcq011  

30. Yuan M, Carlson WH, Heins RD, Cameron AC (1998) Effect of forcing temperature on time to flower of Coreopsis grandiflora, Gaillardia grandiflora, Leucanthemum ×superbum, and Rudbeckia fulgida. HortScience 33:663-667