Article | . 2017 Vol. 35, Issue. 6
Characterization of Two Complete Chloroplast Genomes in the Tribe Gnaphalieae (Asteraceae): Gene Loss or Pseudogenization of trnT-GGU and Implications for Phylogenetic Relationships

Baekdudaegan Biodiversity Conservation Division, Baekdudaegan National Arboretum1
Department of Biology Education, Chonnam National University2
Department of Biological Sciences, Inha University3

2017.. 769:783


The tribe Gnaphalieae is one of the largest and most complex in the Asteraceae family. The taxonomic delimitations of the tribe Gnaphalieae have been inferred by researchers; however, the exact relationships between it and other tribes remain in dispute, likely because of complicated evolutionary histories. To improve our understanding of this tribe, we investigated the complete chloroplast (cp) genomes of two Asian Gnaphalieae taxa, namely that within Anaphalissinica and Leontopodium leiolepis, and used this information to infer their phylogenetic relationships and evolution. The cp genomes of A. sinica and L. leiolepis were found to be 152,718 bp and 151,072 bp long, respectively, with gene contents and orders that resembled those of other Asteraceae species. However, we determined that the trnT-GGU genes within the two Gnaphalieae cp genomes were either pseudogenized or lost. Because these gene features have also been identified in other Gnaphalieae genera, but not among other Asteraceae species, they reinforce the taxonomic boundary of the tribe Gnaphalieae as an independent group. Moreover, based on the trnT-GGU gene features in members of the HAP clade, we speculate that the parental lineages of the genera Anaphalisand Pseudognaphalium have an allopolyploid origin. Thus, mutations in the trnT-GGU gene may be used in future studies as indicators of generic and/or tribal relationships. Using 52 protein-coding genes, we performed a phylogenetic analysis which further indicated that, alongside the tribes Astereae and Anthemideae, the tribe Gnaphalieae is a monophyletic taxon. We also identified 63 and 81 SSRs in L. leiolepis and A. sinica cp genomic sequences, respectively. The results described here will be useful for inferring the evolutionary history of the tribe Gnaphalieae, and specific genomic information can be applied in conservation strategies for endangered edelweiss ( Leontopodium R. Br. ex Cass.) and pearly everlasting ( AnaphalisDC.) species.

1. Anderberg, AA (1989) Phylogeny and reclassification of the tribe Inuleae (Asteraceae). Can J Bot 67:2277-2296. doi:10.1139/b89-292  

2. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Retrieved from http://www.bioinformatics.  

3. Bayer RJ, Starr JR (1998) Tribal phylogeny of the Asteraceae based on two non-coding chloroplast sequences, the L intron and L/F intergenic spacer. Ann Mol Bot Gard 242–256. doi:10.2307/2992008  

4. Bentley J, Klaassen ES, Bergh NG (2015) (Asteraceae) transferred from Gnaphalieae to Athroismeae based on phylogenetic analysis of nuclear and plastid DNA sequence data. Taxon 64:975-986. doi:10.12705/645.7  

5. Bock DG, Kane NC, Ebert DP, Rieseberg LH (2014) Genome skimming reveals the origin of the Jerusalem artichoke tuber crop species: neither from Jerusalem nor an artichoke. New Phytol 201:1021-1030. doi:10.1111/nph.1256  

6. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. doi:10.1093/bioinformatics/btu170  

7. Choi KS, Park SJ (2015) The complete chloroplast genome sequence of Aster spathulifolius (Asteraceae); genomic features and relationship with Asteraceae. Gene 572:214-221. doi:10.1016/j.gene.2015.07.020  

8. Delannoy E, Fujii S, des Francs-Small CC, Brundrett M, Small I (2011) Rampant gene loss in the underground orchid Rhizanthella gardneri highlights evolutionary constraints on plastid genomes. Mol Biol Evol 28:2077-2086. doi:10.1093/molbev/msr028  

9. Dempewolf H, Kane NC, Ostevik KL, Geleta M, Barker MS, Lai Z, Stewart ML, Bekele E, Engels JMM, et al (2010) Establishing genomic tools and resources for Guizotia abys (L.f.) Cass. – the development of a library of expressed sequence tags, microsatellite loci, and the sequencing of its chloroplast genome. Mol Ecol Resour 10:1048-1058. doi:10.1111/j.1755-0998.2010.02859.x  

10. Do HDK, Kim JS, Kim JH (2014) A I_CAU triplication event in the complete chloroplast genome of Paris verticillata M. Bieb. (Melanthiaceae, Liliales). Genome Biol Evol 6:1699-1706. doi:10.1093/gbe/evu138  

11. Doorduin L, Gravendeel B, Lammers Y, Ariyurek Y, Chin-A-Woeng T, Vrieling K (2011) The complete chloroplast genome of 17 individuals of pest species Jacobaea vulgaris: SNPs, microsatellites and barcoding markers for population and phylogenetic studies. DNA Res 18:93-105. doi:10.1093/dnares/dsr002  

12. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, Duran C, Field M, Heled J, Kearse M, et al (2011) GENEIOUS Pro v 7. Retrieved from  

13. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792-1797. doi:10.1093/nar/gkh340  

14. Galbany-Casals M, Unwin M, Garcia-Jacas N, Smissen RD, Susanna A, Bayer RJ (2014) Phylogenetic relationships in (Compositae: Gnaphalieae) and related genera: incongruence between nuclear and plastid phylogenies, biogeographic and morphological patterns, and implications for generic delimitation. Taxon 63:608-624. doi:10.12705/633.8  

15. Harrison PA, Vandewalle M, Sykes MT, Berry PM, Bugter R, de Bello F, Feld CK, Grandin U, Harrington R, et al (2010) Identifying and prioritising services in European terrestrial and freshwater ecosystems. Biodivers Conserv 19:2791–2821. doi:10.1007/s10531- 010-9789-x  

16. Hu S, Sablok G, Wang B, Qu D, Barbaro E, Viola R, Li M, Varotto C (2015) Plastome organization and evolution of chloroplast genes in Cardamine species adapted to contrasting habitats. BMC Genomics 16:306. doi:10.1186/s12864-015-1498-0  

17. Jansen RK, Palmer JD (1987a) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc Natl Acad Sci USA 84:5818-5822. doi:10.1073/pnas.84.16.5818  

18. Jansen RK, Palmer JD (1987b) Chloroplast DNA from lettuce and Barnadesia (Asteraceae): structure, gene localization, and characterization of a large inversion. Curr Genet 11:553-564. doi:10.1007/BF00384619  

19. Karis PO (1993) Morphological phylogenetics of the Asteraceae-Asteroideae, with notes on character evolution. Plant Syst Evol 186:69-93. doi:10.1007/BF00937714  

20. Kim KJ, Jansen RK (1995) ndhF sequence evolution and the major clades in the sunflower family. Proc Natl Acad Sci USA 92:10379- 10383. doi:10.1073/pnas.92.22.10379  

21. Kim KJ, Choi KS, Jansen RK (2005) Two chloroplast DNA inversions originated simultaneously during the early evolution of the sunflower family (Asteraceae). Mol Biol Evol 22:1783-1792. doi:10.1093/molbev/msi174  

22. Kramer AT, Havens K (2009) Plant conservation genetics in a changing world. Trends Plant Sci 14:599-607. doi:10.1016/j.tplants.2009.08.005  

23. Kumar S, Hahn FM, McMahan CM, Cornish K, Whalen MC (2009) Comparative analysis of the complete sequence of the plastid genome of Parthenium argentatum and identification of DNA barcodes to differentiate Parthenium species and lines. BMC Plant Biol 9:131. doi:10.1186/1471-2229-9-131  

24. Lee HL, Jansen RK, Chumley TW, Kim KJ (2007) Gene relocations within chloroplast genomes of Jasminum and Menodora (Oleaceae) are due to multiple, overlapping inversions. Mol Biol Evol 24:1161-1180. doi:10.1093/molbev/msm036  

25. Li X, Zhang TC, Qiao Q, Ren Z, Zhao J, Yonezawa T, Hasegawa M, Crabbe MJC, Li J, et al (2013) Complete chloroplast genome sequence of holoparasite (Orobanchaceae) reveals gene loss and horizontal gene transfer from its host (Chenopodiaceae). PLoS ONE 8:e58747. doi:10.1371/journal.pone.0058747  

26. Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451-1452. doi:10.1093/bioinformatics/btp187  

27. Liu Y, Huo N, Dong L, Wang Y, Zhang S, Young HA, Feng X, Gu YQ (2013) Complete chloroplast genome sequences of Mongolia medicine and phylogenetic relationships with other plants. PLoS ONE 8:e57533. doi:10.1371/journal.pone.0057533  

28. Lohse M, Drechsel O, Bock R (2007) Organellar genome DRAW (OGDRAW): a tool for the easy generation of high-quality custom graphical maps of plastid and mitochondrial genomes. Curr Genet 52:267-274. doi:10.1007/s00294-007-0161-y  

29. McNeal JR, Kuehl JV, Boore JL, de Pamphilis CW (2007) Complete plastid genome sequences suggest strong selection for retention of photosynthetic genes in the parasitic plant genus Cuscuta. BMC Plant Biol 7:57. doi:10.1186/1471-2229-7-57  

30. Merxmüller H, Leins P, Roessler H (1977) Inuleae – systematic review. In VH Heywood, JB Harborne, BL Turner, eds, The Biology and Chemistry of the Compositae, Vol I. Academic Press, London, UK, pp 577-602  

31. Nie X, Lv S, Zhang Y, Du X, Wang L, Biradar SS, Tan X, Wan F, Weining S (2012) Complete chloroplast genome sequence of a major invasive species, crofton weed (Ageratina adenophora). PLoS ONE 7:e36869. doi:10.1371/journal.pone.0036869  

32. Nie ZL, Funk VA, Sun H, Deng T, Meng Y, Wen J (2013) Molecular phylogeny of (Asteraceae, Gnaphalieae) with biogeographic implications in the Northern Hemisphere. J Plant Res 126:17-32. doi:10.1007/s10265-012-0506-6  

33. Nie ZL, Funk VA, Meng Y, Deng T, Sun H, Wen J (2015) Recent assembly of the global herbaceous flora: evidence from the paper daisies (Asteraceae: Gnaphalieae). New Phytol 209:1795-1806. doi:10.1111/nph.13740  

34. Panero JL, Funk VA (2008) The value of sampling anomalous taxa in phylogenetic studies: major clades of the Asteraceae revealed. Mol Phylogenet Evol 47:757-782. doi:10.1016/j.ympev.2008.02.011  

35. Schattner P, Brooks AN, Lowe TM (2005) The Ascan-SE, snoscan and snoGPS web servers for the detection of As and snoRNAs. Nucleic Acids Res 33:686-689. doi:10.1093/nar/gki366  

36. Schmickl R, Kiefer C, Dobeš C, Koch MA (2009) Evolution of F (GAA) pseudogenes in cruciferous plants. Plant Syst Evol 282:229- 240. doi:10.1007/s00606-008-0030-2  

37. Smissen RD, Galbany-Casals M, Breitwieser I (2011) Ancient allopolyploidy in the everlasting daisies (Asteraceae: Gnaphalieae): complex relationships among extant clades. Taxon 60:649-662  

38. Stamatakis A (2006) RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688–2690. doi:10.1093/bioinformatics/btl446  

39. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML web servers. Syst Biol 57:758-771.doi:10.1080/10635150802429642  

40. Takakura KI, Nishio T (2012) Safer DNA extraction from plant tissues using sucrose buffer and glass fiber filter. J Plant Res 125:805- 807. doi:10.1007/s10265-012-0502-x  

41. Timme RE, Kuehl JV, Boore JL, Jansen RK (2007) A comparative analysis of the Lactuca and Helianthus (Asteraceae) plastid genomes: identification of divergent regions and categorization of shared repeats. Am J Bot 94:302-312. doi:10.3732/ajb.94.5.27  

42. Wagstaff SJ, Breitwieser I (2002) Phylogenetic relationships of New Zealand Asteraceae inferred from ITS sequences. Pl Syst Evol 231:203-224. doi:10.1007/s006060200020  

43. Walker JF, Zanis MJ, Emery NC (2015) Correction to “Comparative analysis of complete chloroplast genome sequence and inversion variation in Lasthenia burkei (Madieae, Asteraceae)”. Am J Bot 102:1008. doi:10.3732/ajb.1500990  

44. Ward JM, Bayer RJ, Breitwieser I, Smissen RD, Galbany-Casals M, Unwin M (2009) Gnaphalieae – Systematic and phylogenetic review In VA Funk, A Susanna, TF Stuessy, RJ Bayer, eds, Systematics, Evolution, and Biogeography of Compositae. IAPT, Vienna, Austria, pp 537-585  

45. Wicke S, Müller KF, de Pamphilis CW, Quandt D, Wickett NJ, Zhang Y, Renner SS, Schneeweiss GM (2013) Mechanisms of functional and physical genome reduction in photosynthetic and nonphotosynthetic parasitic plants of the broomrape family. Plant Cell 25:3711-3725. doi:10.1105/tpc.113.113373  

46. Wyman SK, Jansen RK, Boore JL (2004) Automatic annotation of organellar genomes with DOGMA. Bioinformatics 20:3252-3255. doi:10.1093/bioinformatics/bth352  

47. Zhang Y, Li L, Yan TL, Liu Q (2014) Complete chloroplast genome sequences of Praxelis (Eupatorium catarium Veldkamp), an important invasive species. Gene 549:58-69. doi:10.1016/j.gene.2014.07.041  

48. Zheljazkov VD, Craker LE (2016) Overview of medicinal and aromatic crops. In VD Jeliazkov, CL Crantrell, eds, Medicinal and Aromatic Crops: Production, Phytochemistry, and Utilization. Oxford University Press, Oxford, UK, pp 1-12. doi:10.1021/bk-2016- 1218.ch001