Article | . 2017 Vol. 35, Issue. 6
Glutamic Acid Foliar Application Enhances Antioxidant Enzyme Activities in Kimchi Cabbages Leaves Treated with Low Air Temperature



Vegetable Research Division, National Institute of Horticultural & Herbal Science1




2017.. 700:706


PDF XML




This study aimed to determine the effects of foliar application of glutamic acid to alleviate the physiological damage caused by low air temperatures at early growth stages in Kimchi cabbages. Twenty-eight days after transplanting the Kimchi cabbage was exposed to a low (10°C) air temperature for seven days and then treated with three different foliar sprays including pure water (control), 0.3% urea, and 10 μmol·mol-1 glutamic acid solutions (GA). After foliar treatments, cabbage plants were grown in non-shaded or 30%-shaded conditions. The maximum fresh weight of Kimchi cabbage was 1,700 g/plant when treated with glutamic acid, and the minimum fresh weight was 1,193 g/plant when treated with urea. Both head weight and yield were the greatest with glutamic acid treatment, which produced 4,845 kg/10a, while urea treatment produced only 3,400 kg/10a. The net photosynthetic rate and stomatal conductance were greatest under both glutamic acid and urea treatments compared to pure water. Low air temperature treatment of Kimchi cabbages adversely affected the net photosynthetic rate and stomatal conductance; however, an increase in the carboxylation rate and photosynthetic electron transport system efficiency was also observed. GA treatment reduced enzymatic activity in cold conditions compared to control plants that weren’t treated. Notably, the H2O2 level was the lowest after glutamic acid treatment. These results indicated that foliar application of glutamic acid reduced physiological damage and enhanced antioxidant enzymes activity in Kimchi cabbages, which improved their tolerance to low air temperature.



1. Allen DJ, Ort DR (2001) Impact of chilling temperatures on photosynthesis in warm-climate plants. Trends Plant Sci 6:36-42. doi:10.10 16/S1360-1385(00)01808-2  

2. Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein using the principle of protein-dye binding. Anal Biochem 72:248-254. doi:10.1016/0003-2697(76)90527-3  

3. Dat JF, Foyer CH, Scott I (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118:1455-1461. doi:10.1104/pp.118.4.1455  

4. Fan H, Du C, Xu Y, Wu Z (2014) Exogenous nitric oxide improves chilling tolerance of Chinese cabbage seedlings by affecting antioxidant enzymes in leaves. Hortic Environ Biotechnol 55:159-165. doi:10.1007/s13580-014-0161-z  

5. Fariduddin Q, Yusuf M, Hayat S, Ahmad A (2009) Effect of 28-homobrassinolide on antioxidant capacity and photosynthesis in Brassica juncea plants exposed to different levels of copper. Environ Exp Bot 66:418-424. doi:10.1016/j.envexpbot.2009.05.001  

6. Farooq M, Aziz T, Wahid A, Lee DJ, Siddique KHM (2009) Chilling tolerance in maize: agronomic and physiological approaches. Crop Pasture Sci 60:501-516. doi:10.1071/CP08427  

7. Farquhar GD, Caemmerer Sv, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78-90. doi:10.1007/BF00386231  

8. Foyer CH, Noctor G (2005) Oxidant and antioxidant signaling in plants: a re-evaluation of the concept of oxidative stress in a physiological context. Plant Cell Environ 28:1056-1071. doi:10.1111/j.1365-3040.2005.01327.x  

9. Goh CH, Ko SM, Koh S, Kim YJ, Bae HJ (2012) Photosynthesis and environments: photoinhibition and repair mechanisms in plants. J Plant Biol 55: 93-101. doi:10.1007/s12374-011-9195-2  

10. King AI, Reid MS, Patterson BD (1982) Diurnal changes in the chilling sensitivity of seedlings. Plant Physiol 70:211-214. doi:10.1104/pp.70.1.211  

11. Kuź niak E and Urbanek H (2000) The involvement of hydrogen peroxide in plant responses to stresses. Acta Physiol Plant 22:195-203.doi:10.1007/s11738-000-0076-4  

12. Lee SG, Kim SK, Lee HJ, Choi CS, Park ST (2016) Impacts of climate change on the growth, morphological and physiological responses, and yield of Kimchi cabbage leaves. Hortic Environ Biotechnol 57:470-477. doi:10.1007/s13580-016-1163-9. doi:10.1007/s13580-016-1163-9  

13. Liu T, Li Y, Ren J, Zhang C, Kong M, Song X, Zhou J, Hou X (2013) Over-expression of BcFLC1 from non-heading Chinese cabbage enhances cold tolerance in Arabidopsis. Biol Plantarum 57:262-266. doi:10.1007/s10535-012-0287-8  

14. Liu Y, Zhao Z, Si J, Di C, Han J, An L (2009) Brassinosteroids alleviate chilling induced oxidative damage by enhancing antioxidant defense system in suspension cultured cells of Chorispora bungeana . Plant Growth Regul 59:207-214. doi:10.1007/s10725-009-9405-9  

15. Mckersie YY, Leshem YY (1994) Stress and stress coping in cultivated plants. Kluwer Academic Publishers, Dordrecht, The Netherlands, p 256. doi:10.1007/978-94-017-3093-8  

16. Mehlhorn H, Lelandais M, Korth HG, Foyer CH (1996) Ascorbate is the natural substrate for plant peroxidases. FEBS Letters 378:203- 206. doi:10.1016/0014-5793(95)01448-9  

17. Ministry of Agriculture, Food and Rural Affairs (MAF) (2015) Primary statistics for agrictulrue production (http://www.mafra.go.kr/ main.jsp)  

18. Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405-410. doi:10.1016/S1360-1385(02)02312-9  

19. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645-663. doi:10.1111/j.1469-8137.2005.01487.x  

20. Nam YI, Woo YH, Lee KH (2006) Effects of soil moisture and chemical application on low temperature stress of cucumber (Cucumis sativus L.) seedling. J Bio-Environ Control 15:374-384  

21. Park EJ, Heo Y, Son BG, Choi YW, Lee YJ, Park YH, Suh JM, Cho JH, Hong CO, et al (2014) The influence of abnormally low temperatures on growth and yield of hot pepper. J Environ Sci Int 23:781-786. doi.:10.5322/JESI.2014.5.781  

22. Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30:1035-1040. doi:10.1111/j.1365-3040.2007.01710.x  

23. Sharma SS and Dietz KJ (2006) The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. J Exp Bot 57:711-726. doi:10.1093/jxb/erj073  

24. Suzuki N and Mittler R (2006) Reactive oxygen species and temperature stresses: a delicate balance between signaling and destruction. Physiol Plant 126:45-51. doi:10.1111/j.0031-9317.2005.00582.x  

25. Thakur P, Kumar S, Malik JA, Berger JD, Nayyar H (2010) Cold stress effects on reproductive development in grain crops: an overview. Environ Exp Bot 67:429-443. doi:10.1016/j.envexpbot.2009.09.004  

26. Thomas DJ, Thomas JB, Prier SD, Nasso NE, Herbert SK (1999) Iron superoxide dismutase protects against chilling damage in the cyanobacterium Synechococcus species PCC7942. Plant Physiol 120:275-282. doi:10.1104/pp.120.1.275  

27. Turhan E, Gulen H, Eris A (2008) The activity of antioxidative enzymes in three strawberry cultivars related to salt-stress tolerance. Acta Physiol Plant 30:201-208. doi:10.1007/s11738-007-0108-4  

28. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16:4806-4816. doi:10.1093/emboj/16.16.4806  

29. Zhang XD, Wang RP, Zhang FJ, Tao FQ, Li WQ (2013) Lipid profiling and tolerance to low-temperature stress in Thellungiella salsuginea in comparison with Arabidopsis thaliana. Biol Plant 57:149-153. doi:10.1007/s10535-012-0137-8