Article | . 2017 Vol. 35, Issue. 5
Reduced Expression of Gongdae Ring Zinc Finger 1 (GdRZF1) Enhances Drought Stress Tolerance in Watermelon (Citrullus lanatus)

Department of Agricultural Plant Science, Gyeongsang National University1
Department of Plant Biotechnology, Chonnam National University2
Korea Atomic Energy Research Institute3
Department of Rural and Biosystems Engineering, Agricultural Robotics and Automation Research Center, Chonnam National University4

2017.. 637:646


Watermelon is a major fruit vegetable around the world. Drought is an abiotic stress factor that affects the productivity and growth of crop plants. To improve the tolerance of watermelon to drought stress, it is important to isolate stress tolerance-related genes. Recently, we characterized the gene for a ubiquitin E3 ligase protein named Lagenaria siceraria RING Zinc Finger 1 (LsRZF1). In Arabidopsis, LsRZF1 is involved in the drought response through the proline metabolism-mediated pathway. In this study, we identified and characterized a watermelon (Citrullus lanatus cv. Gongdae) homolog of LsRZF1, designated GdRZF1. LsRZF1 antisense (lsrzf1) transgenic watermelon lines showed reduced GdRZF1 expression, and were less sensitive to drought stress than the wild type. Reduced expression of GdRZF1 was also significantly influential in changes in drought-sensitive parameters including relative water content, ion leakage, chlorophyll content, malondialdehyde levels, proline content, and the expression of drought stress-associated genes. Taken together, these findings suggest that GdRZF1 is important for water deficit tolerance in watermelon.

1. Bates LS, Waldren RP, Teare ID (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39:205-207. doi:10.1007/BF00018060   

2. Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A (2009) E3 ubiquitin ligases and plant innate immunity. J Exp Bot 60:1123-1132. doi:10.1093/jxb/erp059   

3. Dye BT, Schulman BA (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 36:131-150. doi:10.1146/annurev.biophys.36.040306.132820   

4. Freemont PS (2000) Ubiquitination: RING for destruction? Curr Biol 10:R84-R87. doi:10.1016/S0960-9822(00)00287-6   

5. Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79-102. doi:10.1023/A:1005703923347   

6. Hare PD, Cress, WA, Van Staden J (1999) Proline synthesis and degradation: a model system for elucidating stress-related signal transduction. J Exp Bot 50:413-434. doi:10.1093/jxb/50.333.413   

7. Ju HW, Min JH, Chung MS, Kim CS (2013) The atrzf1 mutation of the novel RING-type E3 ubiquitin ligase increases proline contents and enhances drought tolerance in Arabidopsis. Plant Sci 203:1-7. doi:10.1016/j.plantsci.2012.12.007   

8. Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148:350-382. doi:10.1016/0076-6879(87)48036-1   

9. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C (T)) method. Methods 25:402-408. doi:10.1006/meth.2001.1262   

10. Marrocco K, Bergdoll M, Achard P, Criqui MC, Genschik P (2010) Selective proteolysis sets the tempo of the cell cycle. Curr Opin Plant Biol 13:631-639. doi:10.1016/j.pbi.2010.07.004   

11. Min JH, Ju HW, Yang KY, Chung JS, Cho BH, Kim CS (2014) Heterologous expression of the gourd E3 ubiquitin ligase gene LsRZF1 compromises the drought stress tolerance in Arabidopsis thaliana . Plant Physiol Biochem 77:7-14. doi:10.1016/j.plaphy.2014.01.010   

12. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473-497. doi:10.1111/j.1399-3054.1962.tb08052.x   

13. Oda M (1995) New grafting methods for fruit-bering vegetables in Japan. Jpn Agric Res Q 29:187-198   

14. Park SM, Lee JS, Jegal S, Jeon BY, Jung M, Park YS, et al. (2005) Transgenic watermelon rootstock resistant to CGMMV (cucumber green mottle mosaic virus) infection. Plant Cell Rep 24:350-356. doi:10.1007/s00299-005-0946-8   

15. Ryu MY, Cho SK, Kim WT (2010) The Arabidopsis C3H2C3-type RING E3 ubiquitin ligase AtAIRP1 is a positive regulator of an abscisic acid-dependent response to drought stress. Plant Physiol 154:1983-1997. doi:10.1104/pp.110.164749   

16. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459:1071-1078. doi:10.1038/nature08122   

17. Shi H, Ye T, Chan Z (2014) Comparative proteomic responses of two bermudagrass (Cynodon dactylon (L). Pers.) varieties contrasting in drought stress resistance. Plant Physiol Biochem 82:218-228. doi:10.1016/j.plaphy.2014.06.006   

18. Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals intransgenic microalgae. Plant Cell 14:2837-2847. doi:10.1105/tpc.004853   

19. Smirnova OG, Stepanenko IL, Shumnyi VK (2011) The role of the COP1, SPA, and PIF proteins in plant photomorphogenesis. Biol Bull Rev 1:314-324. doi:10.1134/S2079086411040098   

20. Weatherley, PE (1950) Studies in the water relations of the cotton plant. I. The field measurements of water deficits in leaves. New Phytol 49:81-97. doi:10.1111/j.1469-8137.1950.tb05146.x   

21. Zhang J, Kirkham MB (1994) Drought-stress-induced changes in activities of superoxide dismutase, catalase, and peroxidase in wheat species. Plant Cell Physiol 35:785-791. doi:10.1093/oxfordjournals.pcp.a078658   

22. Zhang L, Zhao G, Xia C, Jia J, Liu X, Kong X (2012) A wheat R2R3-MYB gene, TaMYB30-B, improves drought stress tolerance in transgenic Arabidopsis. J Exp Bot 63:5873-5885. doi:10.1093/jxb/ers237