Article | . 2017 Vol. 35, Issue. 5
Development of a Gene-based Marker for the non-ripening (nor) Gene in Cultivated Tomato



Department of Bioresources Engineering, Sejong University1
Plant Engineering Research Institute, Sejong University2




2017.. 618:627


PDF XML




Long shelf-life is an important trait for providing fresh fruits to consumers in cultivated tomato (Solanum lycopersicum L.) The molecular mechanism of fruit ripening in tomato was previously defined by identifying several genes associated with abnormal ripening. Of these genes, non-ripening (nor) encodes a member of NAC domain family transcription factors that is important for diverse physiological processes, including fruit ripening. In this study, we investigated sequence variations associated with the nor mutation to develop a gene-based marker. Two varieties of S. lycopersicum with representative nor mutants (LA1793 and LA3013) and a wild-type variety (San Marzano) were used for sequence analysis of the nor gene. A total of eight primer sets were designed to sequence the full length of nor gene including a 2.8 kb open reading frame (three exons and two introns) as well as 2.0 kb region upstream from the start codon. Analysis of the 4.8 kb sequence for the nor gene found a 2 bp insertion and deletion (InDel) in the longest exon (725 bp) that results in a frame-shift mutation in the two mutant varieties. This InDel was used to genotype a collection of additional 81 varieties consisting of 30 inbred and 51 commercial F1 hybrid varieties. Of these varieties, two inbred and one F1 hybrid varieties had nor mutations that were in homozygous or heterozygous forms. These results will be useful for marker-assisted selection (MAS) for improving long shelf-life and quality of fruit in tomato breeding programs.



1. Arah IK, Ahorbo GK, Anku EK, Kumah EK, Amaglo H (2016) Postharvest handling practices and treatment methods for tomato handlers in developing countries: A mini review. Adv Agric 2016:1-8. doi:10.1155/2016/6436945   

2. Barry CS, Giovannoni JJ (2006) Ripening in the tomato Green-ripe mutant is inhibited by ectopic expression of a protein that disrupts ethylene signaling. Proc Natl Acad Sci USA 103:7923-7928. doi:10.1073/pnas.0602319103   

3. Batu A (2004) Determination of acceptable firmness and colour values of tomatoes. J Food Eng 61:471-475. doi:10.1016/s0260-8774(03)00141-9   

4. Bonfield JK, Smith KF, Staden R (1995) A new DNA sequence assembly program. Nucleic Acids Res 23:4992-4999  

5. Cantu D, Blanco-Ulate B, Yang L, Labavitch JM, Bennett AB, Powell AL (2009) Ripening-regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiol 150:1434-1449. doi:10.1104/pp.109.138701  

6. Davies JN, Kempton RJ (1975) Changes in the individual sugars of tomato fruit during ripening. J Sci Food Agric 26:1103–1110   

7. De Ketelaere B, Lammertyn J, Molenberghs G, Desmet M, Nicolaı̈ B, De Baerdemaeker J (2004) Tomato cultivar grouping based on firmness change, shelf life and variance during postharvest storage. Postharvest Biol Technol 34:187-201. doi:10.1016/j.postharvbio.2004.03.007   

8. Devran Z, Göknur A, Mesci L (2016) D evelopment of molecular markers for the Mi-1 gene in tomato using the KASP genotyping assay. Hortic Environ Biotechnol 57:156-160. doi:10.1007/s13580-016-0028-6   

9. Eriksson EM, Bovy A, Manning K, Harrison L, Andrews J, De Silva J, Tucker GA, Seymour GB (2004) Effect of the Colorless nonripening mutation on cell wall biochemistry and gene expression during tomato fruit development and ripening. Plant Physiol 136:4184-4197. doi:10.1104/pp.104.045765   

10. Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16 S170-180. doi:10.1105/tpc.019158   

11. Giovannoni JJ (2007) Fruit ripening mutants yield insights into ripening control. Curr Opin Plant Biol 10:283-289. doi:10.1016/j.pbi.2007.04.008   

12. Giovannoni JJ, Noensie EN, Ruezinsky DM, Lu X, Tracy SL, Ganal MW, Martin GB, Pillen K, Alpert K, et al (1995) Molecular genetic analysis of the ripening-inhibitor and non-ripening loci of tomato. Mol Gen Genet 248:195-206   

13. Hileman LC, Sundstrom JF, Litt A, Chen M, Shumba T, Irish VF (2006) Molecular and phylogenetic analyses of the MADS-box gene family in tomato. Mol Biol Evol 23:2245-2258. doi:10.1093/molbev/msl095   

14. Hoering U (2012) Lost harvests – Food losses and food insecurity: extent and causes, impacts and possible solutions. FDCL-Verlag, Berlin, Germany, p 24   

15. Kabelka E, Franchino B, Francis DM (2002) Two loci from Lycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92:504-510. doi:10.1094/PHYTO.2002.92.5.504   

16. Kasso M, Bekele A (2016) Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa Region, Ethiopia. J Saudi Soc Agric Sci 2016. doi:10.1016/j.jssas.2016.01.005   

17. Kerr EA (1958) Mutations of chlorophyll retention in ripe fruit. Rep Tomato Genet Coop 8:22   

18. Kim HJ, Lee HR, Hyun JY, Hong DO, Won DC, Harn CH (2013) A SCAR marker linked to RIPENING-INHIBITOR in tomato. Korean J Breed Sci 45:104-108. doi:10.9787/kjbs.2013.45.2.104   

19. Kopeliovitch E, Rabinowitch H, Mizrahi Y, Kedar N (1981) Mode of inheritance of alcobaca, a tomato ripening mutant. Euphytica 30:223–225   

20. Kramer M, Sanders R, Bolkan H, Waters C, Sheeny RE, Hiatt WR (1992) Postharvest evaluation of transgenic tomatoes with reduced5214(92)90007-C   

21.   

22. Lincoln JE, Fischer RL (1988) Regulation of gene expression by ethylene in wild-type and rin tomato (Lycopersicon esculentum) fruit. Plant Physiol 88:370-374   

23. Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948-952. doi:10.1038/ng1841  

24. Martel C, Vrebalov J, Tafelmeyer P, Giovannoni JJ (2011) The tomato MADS-box transcription factor RIPENING INHIBITOR interacts with promoters involved in numerous ripening processes in a COLORLESS NONRIPENING-dependent manner. Plant Physiol 157:1568-1579. doi:10.1104/pp.111.181107   

25. Ng TJ (1976). Genetic and physiological characterization of the rin and nor non-ripening mutants of tomato (Lycopersicon esculentum, Mill.). PhD Diss., Purdue University, IN, USA   

26. Pék Z, Helyes L (2010) Color changes and antioxidant content of vine and postharvest-ripened tomato fruits. HortScience 45:466-468   

27. Perveen R, Suleria HA, Anjum FM, Butt MS, Pasha I, Ahmad S (2015) Tomato (Solanum lycopersicum) carotenoids and lycopenes chemistry; Metabolism, absorption, nutrition, and allied health claims. Crit Rev Food Sci Nutr 55:919-929. doi:10.1080/10408398.2012.657809   

28. Phan NT, Sim SC (2017) Genomic tools and their implications for vegetable breeding. Hortic Sci Technol 35:149-164. doi:10.12972/ kjhst.20170018   

29. Raiola A, Rigano MM, Calafiore R, Frusciante L, Barone A (2014) Enhancing the health-promoting effects of tomato fruit for biofortified food. Mediat Inflamm 2014:139873. doi:10.1155/2014/139873   

30. Robinson RW, Tomes M (1968) Ripening inhibitor: a gene with multiple effect on ripening. Rep Tomato Genet Coop 18:36–37   

31. Sablani SS, Opara LU, Al-Balushi K (2006) Influence of bruising and storage temperature on vitamin C content of tomato fruit. J Food Agric Environ 4:54-56   

32. Seymour GB, Chapman NH, Chew BL, Rose JK (2013) Regulation of ripening and opportunities for control in tomato and other fruits. Plant Biotechnol J 11:269-278. doi:10.1111/j.1467-7652.2012.00738.x   

33. Thompson AJ, Tor M, Barry CS, Vrebalov J, Orfila C, Jarvis MC, Giovannoni JJ, Grierson D, Seymour GB (1999) Molecular and genetic characterization of a novel pleiotropic tomato-ripening mutant. Plant Physiol 120:383-389   

34. Tigchelaar EC, Tomes ML, Kerr EA, Barman RJ (1973) A new fruit ripening mutant, non-ripening (nor). Rep Tomato Genet Coop 23:33   

35. Tomato Genome Consortium (2012) The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485:635-641. doi:10.1038/nature11119   

36. Truong HTH, Kim S, Tran HN, Nguyen TTT, Nguyen LT, Hoang TK (2015) Development of a SCAR marker linked to bacterial wilt (Ralstonia solanacearum ) resistance in tomato line Hawaii 7996 using bulked-segregant analysis. Hortic Environ Biotechnol 56:506-515. doi:10.1007/s13580-015-1050-9   

37. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3-new capabilities and interfaces. Nucleic Acids Res 40:e115. doi:10.1093/nar/gks596   

38. Veerappan K, Jung HJ, Hwang I, Kho KH, Chung MY, Nou IS (2016) Sequence variation in SlMYB12 is associated with fruit peel color in pink tomato cultivars. Hortic Environ Biotechnol 57:274-279. doi:10.1007/s13580-016-0041-9   

39. Vicente AR, Saladié M, Rose JKC, Labavitch JM (2007) The linkage between cell wall metabolism and fruit softening: looking to the future. J Sci Food Agric 87:1435-1448. doi:10.1002/jsfa.2837   

40. Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-Box gene necessary for fruit ripening at the tomato Ripening-Inhibitor (Rin) locus. Science 296:343-346. doi:10.1126/science.1068181   

41. Wang W, Cai J, Wang P, Tian S, Qin G (2017) Post-transcriptional regulation of fruit ripening and disease resistance in tomato by the vacuolar protease SlVPE3. Genome Biol 18:47. doi:10.1186/s13059-017-1178-2   

42. Yuan XY, Wang RH, Zhao XD, Luo YB, Fu DQ (2016) Role of the tomato Non-ripening mutation in regulating rruit quality elucidated using iTRAQ protein profile analysis. PLoS ONE 11:e0164335. doi:10.1371/journal.pone.0164335  

43. Zapata PJ, Guillén F, Martínez-Romero D, Castillo S, Valero D, Serrano M (2008) Use of alginate or zein as edible coatings to delay postharvest ripening process and to maintain tomato (Solanum lycopersicon Mill) quality. J Sci Food Agric 88:1287-1293.doi:10.1002/jsfa.3220