Article | . 2017 Vol. 35, Issue. 5
Genetic Diversity of a Novel Oil Crop, Camellia brevistyla, Revealed by ISSR DNA Markers

Department of Forestry and Nature Conservation, Chinese Culture University1
Department of Aquaculture, National Taiwan Ocean University2
Institute of Ecology and Evolutionary Biology, National Taiwan University3
Faculty of Applied Sciences, Ton Duc Thang University4
Graduate Institute of Biotechnology, Chinese Culture University5
Department of Life Science, Fu Jen Catholic University6
NTT Institute of Hi-Technology, Nguyen Tat Thanh University7

2017.. 588:598


Camellia brevistyla plants are used as food oil in Taiwan. To provide a method for identifying germplasm and assessing the genetic diversity of C. brevistyla, 102 individuals were collected from 29 populations in 11 counties throughout the main island of Taiwan. Inter-simple sequence repeat (ISSR) DNA markers were analyzed and a total of 176 bands were amplified. Of these, 175 bands were found to be polymorphic in these populations. Genetic similarities among populations ranged between 34.1-95.1%. Cluster analysis revealed seven groups of populations plus one outlier (C. kissii). Five individuals from two populations in the southern region were grouped into cluster V, and six populations from both regions were grouped into cluster VII. The remaining populations from the northern region were separated into different clusters from V and VII. Results of an analysis of molecular variance indicated that the variation within populations (75%) was predominantly greater than variations among counties (18%) and among regions (7%). Overall, the gene flow (Nm = 0.509) estimated from genetic differentiation (Gst = 0.534) suggested that gene flow among regions was limited. Higher genetic diversity (H = 0.317), Shannon’s index (I = 0.477), and gene flow (Nm = 0.538) of populations were found in the northern region compared to the southern region. The DNA sequences of C. brevistyla amplified by two oil-biosynthesis genes showed 99-100% homology with those of C. oleifera. Camellia brevistyla populations are highly differentiated and can serve as a basis for the food oil industry as a germplasm resource.

1. Abe H, Matsuki R, Ueno S, Nashimoto M, Hasegawa M (2006) Dispersal of Camellia japonica seeds by Apodemus speciosus revealed by maternity analysis of plants and behavioral observation of animal vectors. Ecol Res 21:732-740. doi:org/10.1007/s11284-006-0179-5  

2. Beyene TM (2013) Genetic diversity of aerial yam (Dioscorea bulbifera L.) accessions in Ethiopia based on agronomic traits. Agric For Fish 2:67-71  

3. Chen Y, Dai X, Hou J, Guan H, Wang Y, Li Y, Yin T (2016) DNA fingerprinting of oil Camellia cultivars with SSR markers. Tree Gene Genomes 12:7. doi:org/10.1007/s11295-015-0966-7  

4. Doyle JJ (1991) DNA protocols for plants – CTAB total DNA isolation. In GM Hewitt, A Johnston, eds, Molecular Technique in Taxonomy. Springer-Verlag, Berlin, Germany, pp 283-293. doi:org/10.1007/978-3-642-83962-7_18  

5. Francisco-Ortega J, Santos-Guerra A, Kim SC, Crawford DJ (2000) Plant genetic diversity in the Canary Islands: a conservation respective. Am J Bot 87:909-919. doi:org/10.2307/2656988  

6. Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Philos Trans Biol Sci 351:1291-1298.doi:org/10.1098/rstb.1996.0112  

7. Hamrick JL, Godt MJW, Sherman-Broyles SL (1992) Factors influencing levels of genetic diversity in woody plant species. New Forest 6:95-124. doi:org/10.1007/BF00120641  

8. Ji PZ, Li H, Gao LZ, Zhang J, Cheng ZQ, Huang XQ (2011) ISSR diversity and genetic differentiation of ancient tea (Camellia sinensis var. assamica) plantations from china: implications for precious tea germplasm conservation. Pak J Bot 43:281-291  

9. Kumar MT (2002) Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter-simple sequence repeat polymerase chain reaction. Euphytica 128:307-315. doi:org/10.1023/A:1021212419811  

10. Lai JA, Yang WC, Hsiao JY (2001) An assessment of genetic relationship in cultivated tea clones and native wild tea in Taiwan using RAPD and ISSR markers. Bot Bull Acad Sinica 42:93-100  

11. Liu ZH, Xie Q, Li ZQ (2015) Genetic diversity and taxonomic status of Pinus tabulaeformis f. shekanensis revealed by ISSR markers.Gene Mol Res 14:1034-1043.doi:org/10.4238/2015.February.6.7  

12. Leonida C, Kamunya SM, Alakonya A, Msomba SW, Uwimanna MA, Okinda PO (2013) Characterization of 20 clones of tea (Camellia sinensis (L.) O. Kuntze) using ISSR and SSR markers. Agric Sci Res J 3:292- 302  

13. Lin L, Hu ZY, Ni S, Li JY, Qiu YX (2013) Genetic diversity of Camellia japonica (Theaceae), a species endangered to East Asia, detected by inter-simple sequence repeat (ISSR). Biochem Syst Ecol 50:199-206. doi:org/10.1016/j.bse.2013.03.049  

14. Ming TL, Bartholomew B (2007) Theaceae. In ZY Wu, PH Raven, DY Hong, eds, Flora of China, Vol. 12. Science Press, Beijing, China and :Missouri Botanical Garden Press, St. Louis, MO, USA, pp 366-478  

15. Mondal TK (2002) Assessment of genetic diversity of tea (Camellia sinensis (L.) O. Kuntze) by inter-simple sequence repeat polymerase chain reaction. Euphytica 128:307-315. doi:org/10.1023/A:1021212419811  

16. Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321-3323. doi:org/10.1073/pnas.70.12.3321  

17. Paul S, Wachira FN, Powell W, Waugh R (1997) Diversity and genetic differentiation among populations of Indian and Kenyan tea (Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers. Theor Appl Genet 94:255-263. doi:org/10.1007/s001220050408   

18. Peakall R, Smouse PE (2012) GenAlEx 6.5:genetic analysis in Excel. Population genetic software for teaching and research - an update.Bioinformatics 28:2537-2539. doi:org/10.1093/bioinformatics/bts460  

19. Reddy MP, Sarla N, Siddiq EA (2002) Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding.  

20. Euphytica 128:9-17. doi:org/10.1023/A:1020691618797   

21. Rohlf FJ (2000) NTSYS-pc. Numerical Taxonomy and Multivariate Analysis System, Version 2.10. Applied Biostatistics, New York, USA  

22. Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43:1349-1368. doi:org/10.2307/2409452  

23. Su MH, Hsieh CF, Tsou CH (2009) The confirmation of Camellia formosensis (Theaceae) as an independent species based on DNA equence analyses. Bot Stud 50:477-485  

24. Su MH, Hsieh CF, Wang JC, Tsou CH (2012a) A taxonomic study of Camellia brevistyla and C. tenuiflora (Theaceae) based on phenetic analyses. Bot Stud 53:275-282  

25. Su MH, Shih MC, Lin KH (2014) Chemical composition of seed oils in native Taiwanese Camellia species. Food Chem 156:369-373.doi:org/10.1016/j.foodchem.2014.02.016  

26. Su, R, Dong Y, Dong K, He S (2012b). The toxic honey plant Camellia oleifera. J Apic Res 51:277-279. doi:org/10.3896/IBRA.  

27. Shannon CE, Weaver W (1949) The mathematical theory of communication. Univsersity of Illinois Press, Urbana, IL, USA  

28. Tan X, Chen H, Zhang D, Zeng Y, Li W (2008) Cloning of full-length cDNA of FAD2 gene from Camellia oleifera . Sci Silvae Sinicae 44:70–75  

29. Vela P, Salinero C, Sainz MJ (2013) Phenological growth stages of Camellia japonica. Ann Appl Biol 162:182-190. doi:org/10.1111/aab.12010  

30. Wachira FN, Waugh R, Powell W, Hackett CA (1995) Detection of genetic diversity in tea (Camellia sinensis) using RAPD markers.Genome 38:201-210. doi:org/10.1139/g95-025  

31. Wang BY, Ruan ZY (2012) Genetic diversity and differentiation in Camellia reticulata (Theaceae) polyploid complex revealed by ISSR and ploidy. Gene Mol Res 11:503-511. doi:org/10.4238/2012.March.6.3  

32. Wang YS, Xiao ZS, Zhang ZB (2004) Seed deposition patterns of oil tea Camellia oleifera influenced by seed-caching rodents. Acta Bot Sin 46:773-779  

33. Wei X, Cao HL, Jiang YS, Ye WH, Ge XJ, Li F (2008) Population genetic structure of Camellia nitidissima (Theaceae) and conservationimplications. Bot Stud 49:147-153  

34. Yao MZ, Chen L, Liang YR (2008) Genetic diversity among tea cultivars from China, Japan and Kenya revealed by ISSR markers and its implication for parental selection in tea breeding programmes. Plant Breed 127:166-172. doi:org/10.1111/j.1439-0523.2007.01448.x   

35. Yeh FC, Yang R, Boyle TJ, Ye Z (2000) PopGene32, Microsoft Windows-Based Freeware for Population Genetic Analysis. Version 1.32.Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, Canada  

36. Zeng Y, Tan X, Zhang L, Jiang N, Cao H (2014) Identification and expression of fructose-1,6-bisphosphate aldolase genes and their relations to oil content in developing seeds of tea oil tree (Camellia oleifera). PLoS ONE 9(9):e107422. doi:org/10.1371/ journal.pone.0107422  

37. Zhang D, Tan X, Chen H, Zeng Y, Jang Y (2008) Full-length cDNA cloning and bioinformatic analysis of Camellia oleifera SAD. Sci Silvae Sinicae 44:155-159.  

38. Zhou L, Wang X, Wang L, Chen Y, Jiang X (2015) Genetic diversity of oil-tea Camellia germplasms revealed by ISSR analysis. Int J Biomath 8:1550070.24. doi:org/10.1142/S1793524515500709  

39. Zhou Y, Zhou C, Yao H, Liu Y, Tu R (2008) Amplification of ISSR markers in detection of genetic variation among Chinese yam (Dioscorea opposita Thunb.) cultivars. Life Sci J 5:6-12  

40. Zietkiewicz E, Rafalski A, Labuda D (1994) Genome fingerprinting by simple sequence repeat (SSR)- anchored polymerase chain reaction amplification. Genomics 20:176-183. doi:org/10.1006/geno.1994.1151