Article | . 2017 Vol. 35, Issue. 5
Foliar Applications of Urea and a Potent Growth Regulator Ameliorate Calyx-end Cracking in Persimmon

Department of Horticulture, College of Agriculture and Life Sciences, Gyeongsang National University1
Institute of Agriculture and Life Science, Gyeongsang National University2
Pear Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration3
Central Instrument Facility, Gyeongsang National University4
Department of Biology Education, College of Education, Gyeongsang National University5

2017.. 544:554


Persimmon (Diospyros kaki ‘Fuyu’) trees were sprayed with 10 mg∙L-1 of CPPU [N-(2-chloro-4-pyridyl)-N′-phenylurea] or 1% urea at blooming to determine whether application of these substances would reduce the incidence of calyx-end cracking. Calyx-end cracking decreased with the application of both CPPU and urea. Changes in physiological parameters (length, weight, and height of calyxes, number of seeds, fruit firmness, and soluble solids content) were investigated in response to CPPU and urea. The length and width of the calyx were greatest in CPPU-treated fruits, and the width of the long or short side of the fruit was greatest in urea-treated fruits. Additionally, phytohormones (indole-3-acetic acid, IAA; gibberellic acid, GA3; zeatin; 2-cis-trans-abscisic acid, ABA; jasmonic acid, JA; and salicylic acid, SA) were analyzed to elucidate the relationship between fruit enlargement and calyx development. CPPU significantly increased levels of GA3 and IAA, while ABA levels decreased in the calyx in all treatments. No significant changes were seen in JA or SA levels. Finally, analysis of anatomical structure showed that CPPU and urea are important in maintaining fruit firmness. Our combined physiological, phytohormonal, and anatomical analysis revealed that CPPU and urea both ameliorate calyx-end cracking in persimmons, and suggests that CPPU and urea may be used to reduce physiological injury in persimmon fruits.

1. Agusti M, Martinez-Fuentes A, Mesejo C (2002) Citrus fruit quality. Physiological basis and techniques of improvement. Agrociencia 6:1–16  

2. Almela V, Zaragoza S, primomillo E, Agusti M (1994) Hormonal control of splitting of Nova mandarin fruit. J Hortic Sci 69:969–973.doi:10.1080/00221589.1994.11516534  

3. Ban T, Ishimaru M, Kobayashi S, Shiozaki S, Goto-Yamamoto N, Horiuchi S (2003) Abscisic acid and 2,4-dichlorophenoxyacetic acid affect the expression of anthycyanin biosynthesic pathway genes in ‘Kyoho’ grape berries. J Hortic Sci Biotechnol 78:586–589. doi:10.1080/14620316.2003.11511668  

4. Bullock RM (1952) A study of some inorganic compounds and growth promoting chemicals in relation to fruit cracking of ‘Bing’cherries at maturity. Proc Am Soc Hortic Sci 59:243–253  

5. Cakir B, Agasse, A, Gaillard, C, Saumonneau A, Delrot S, Atanassova R (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15:2165–2180. doi:10.1105/tpc.013854  

6. Cheng L, Fuchigami LH (2003) Growth of young apple trees in relation to reserve nitrogen and carbohydrates. Tree Physiol 22:1297–1303. doi:10.1093/treephys/22.18.1297  

7. Chernys J, Zeevaart JAD (2000) Characterization of the 9-cisepoxycarotenoid dioxygenase gene family and the regulation of abscisic acid biosynthesis in avocado. Plant Physiol 124:343–353. doi:10.1104/pp.124.1.343  

8. Cho SK, Cho TH (1965) Studies on the local varieties of persimmon in Korea. Res Rep RDA 8:147–190   

9. Egamberdieva D (2009) Alleviation of salt stress by plant growth regulators and IAA producing bacteria in wheat. Acta Physiol Plant 31:861–864. doi:10.1007/s11738-009-0297-0  

10. FAOSTAT (2015) Food and Agriculture Organization of the United Nations (http: //   

11. Fortes AM, Teixeira RT, Romero PA (2015) Complex interplay of hormonal signals during grape berry ripening. Molecules 20:9326-9343. doi:10.3390/molecules20059326  

12. Ginzberg I, Fogelman E, Rosenthal L, Stern RA (2014) Maintenance of high epidermal cell density and reduced calyx-end cracking in developing ‘Pink Lady’ apples treated with a combination of cytokinin 6-benzyladenine and gibberellins A4+A7. Sci Hortic 165:324– 330. doi:10.1016/j.scienta.2013.11.020  

13. Giribaldi M, Gény L, Delrot S, Schubert, A (2010) Proteomic analysis of the effects of ABA treatments on ripening Vitis vinifera berries.J Exp Bot 61:2447–2458. doi:10.1093/jxb/erq079  

14. Glenn GM, Poovaiah BW (1989) Cuticular properties and postharvest calcium application influence cracking of sweet cherries. J Am Soc Hortic Sci 5:781–788  

15. Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M (2004) Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci 167:247–252. doi:10.1016/j.plantsci.2004.03.021  

16. Jia H, Zhang C, Pervaiz T, Zhao P, Liu Z, Wang B, Wang C, Zhang L, Fang J, Qian J (2016) Jasmonic acid involves in grape fruit ripening and resistant against Botrytis cinerea. Funct Integr Genomics 16:79-84. doi:10.1007/s10142-015-0468-6  

17. Jung H, Lee DK, Choi DY, Kim JK (2015) OsIAA6, a member of the rice Aux/IAA gene family, is involved in drought tolerance and tiller outgrowth. Plant Sci 236:304–312. doi:10.1016/j.plantsci.2015.04.018  

18. Kasai S, Hayama H, Kashimura Y, Kudo S, Osanai Y (2008) Relationship between fruit cracking and expression of the expansin gene MdEXPA3 in ‘Fuji’ apples (Malus domestica Borkh.). Sci Hortic 116:194–198. doi:10.1016/j.scienta.2007.12.002  

19. Khadivi-Khub, A (2015) Physiological and genetic factors influencing fruit cracking. Acta Physiol Plant 37:1718.doi:10.1007/s11738-014-1718-2  

20. Kitagawa H, Glucina PE (1984) Persimmon culture in New Zealand. Science Information Publishing Center, Wellington, New Zealand   

21. Lee BHN, Kwon YH, Shin KH, Park HS (2010) Anatomical changes and anthocyanin contents of the exocarp by ethyl oleate treatment on ‘Melrot’ grapes. Korean J Hortic Sci Technol 28:370–373  

22. Leng P, Yuan B, Guo Y, Chen P (2014) The role of abscisic acid in fruit ripening and responses to abiotic stress. J Exp Bot 65:4577–4578. doi:10.1093/jxb/eru204  

23. Li C, Jia H, Chai Y, Shen Y (2011) Abscisic acid perception and signaling transduction in strawberry: a model for non-climacteric fruit ripening. Plant Signal Behav 6:1950–1953. doi:10.4161/psb.6.12.18024  

24. Lin M-T, Chen AM, Lin T-S, Kuan C-S, Lee C-L, Yang W-J (2015) Prevention of natural flowering in pineapple (Ananas comosus) by shading and urea application. Hortic Environ Biotechnol 56:9-16. doi:10.1007/s13580-015-0095-0  

25. Martins FP, Pereira FM (1989) A cultura do caquizeiro. Funep, Jaboticabal, São Paulo, Brazil, p 71  

26. Miura K, Tada, Y (2014) Regulation of water, salinity, and cold stress responses by salicylic acid. Front Plant Sci 5:4. doi:10.3389/fpls.2014.00004  

27. Monselise SP, Costo J (1985) Decreasing splitting incidence in ‘Murcott’ by 2,4-D and calcium nitrate. Alon Hanotea 39:731–733  

28. Niikawa S, Suzuki T (2013) Marked calyx size increase and its influence on calyx-end cracking by spraying forchlorfenuron solution on shoots at leafing time in ‘Taishu’ persimmon. Hortic Res (Japan) 12:297-302. doi:10.2503/hrj.12.297  

29. Pan XQ, Welti R, Wang XM (2010) Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography-mass spectrometry. Nat Protoc 5:986–992. doi:10.1038/nprot.2010.37  

30. Park SJ, Park HS, Kim CC (2003) Influence of ethylene on fruit tissue in ‘Cheongdobansi’ persimmon (Diospyros kaki ). J Kor Soc HorticSci 44:62-65  

31. Powers WL, Bollen WB (1947) Control of cracking of fruit by rain. Science 105:334-335. doi:10.1126/science.105.2726.334  

32. Rehman MU, Rather GH, Dar NA, Mir MM, Iqbal U, Mir MR, Fayaz S, Hakeem KR (2015) Causes and prevention of cherry cracking: A review. In KR Hakeem, ed, Crop Production and Global Environmental Issues. Springer International Publishing, Switzerland, pp 543-552. doi:10.1007/978-3-319-23162-4_19  

33. Sahu P, Sharma N, Sharma DP (2013) Effect of in situ moisture conservation, forchlorfenuron and boron on growth, fruit cracking and yield of pomegranate cv. Kandhari under rainfed conditions of Himachal Pradesh. Indian J Hortic 7:501–505  

34. Sato A, Yamada M (2016) Persimmon breeding in Japan for pollination-constant non-astringent (PCNA) type with marker-assisted selection. Breed Sci 66:60–68. doi:10.1270/jsbbs.66.60  

35. Seo M, Koshiba T (2011) Transport of ABA from the site of biosynthesis to the site of action. J Plant Res 124:501–507.doi:10.1007/s10265-011-0411-4  

36. Simon G (2006) Review on rain induced fruit cracking of sweet cherries (Prunus avium L.), its causes and the possibilities of prevention.Int J Hortic Sci 12:27–35  

37. Sponsel VM, Hedden P (2004) Gibberellin, biosynthesis and inactivation. In PJ Davies, ed, Plant Hormones Biosynthesis, Signal  

38. Transduction, Action. Springer, Dordrecht, The Netherlands, pp 63–94  

39. Stern RA, Ben-Arie R, Ginzberg I (2013) Reducing the incidence of calyx cracking in ‘Pink Lady’ apple using a combination of cytokinin 6-benzyladenine and gibberellins (GA4+7). J Hortic Sci Biotechnol 88:147-153. doi:10.1080/14620316.2013.11512948  

40. Stern RA, Ben-Arie R, Neria O, Flaishman M (2003) CPPU and BA increases fruit size of ‘Royal Gala’ (Malus domestica) apples in a warm climate. J Hortic Sci Biotechnol 78:297-302. doi:10.1080/14620316.2003.11511621  

41. Usenik V, Kastelec D, Stampar F (2005) Physiochemical changes of sweet cherry fruits related to application of gibberellic acid. Food Chem 90:663-671. doi:10.1016/j.foodchem.2004.04.027  

42. Wakasa Y, Hatsuyama Y, Takahashi A, Sato T, Niizeki M, Harada T (2003) Divergent expression of six expansion genes during apple fruit ontogeny. Eur J Hortic Sci 68:253-259  

43. Wang R, Yang Y, Li G (1997) Chinese persimmon germplasm resources. Acta Hortic 436:43–50   

44. Wani SH, Kumar V, Shriram V, Sah SK (2016) Phytohormones and their metabolic engineering for abiotic stress tolerance in crop plants. Crop J 4:162–176. doi:10.1016/j.cj.2016.01.010  

45. Wolters H, Jurgens G (2009) Survival of the flexible: hormonal growth control and adaptation in plant development. Nat Rev Genet 10:305–317. doi:10.1038/nrg2558  

46. Yamada M, Sato A (2002) Genetic differences and environmental variations in calyx-end fruit cracking among Japanese persimmon cultivars and selections. HortScience 37:164–167  

47. Yamada M, Ikeda I, Yamane H, Hirabayashi T (1988) Inheritance of fruit cracking at the calyx and stylar end in Japanese persimmon. JJpn Soc Hortic Sci 57:8–16. doi:10.2503/jjshs.   

48. Yamada M, Yamane H, Hirabayashi T (1987) Yearly fluctuations of two types of fruit cracking in seedling populations of Japanese persimmon (Diospyros kaki Thunb.). J Jpn Soc Hortic Sci 56:287–292. doi:10.2503/jjshs.56.287  

49. Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Physiol 59:225–251. doi:10.1146/annurev.arplant.59.032607.092804  

50. Zhang M, Leng P, Zhang GL, Li XX (2009a) Cloning and functional analysis of 9-cisepoxycarotenoid dioxygenase (NCED) genes encoding a key enzyme during abscisic acid biosynthesis from peach and grape fruits. J Plant Physiol 166:1241–1252.doi:10.1016/j.jplph.2009.01.013  

51. Zhang M, Yuan B, Leng P (2009b) The role of ABA in triggering ethylene biosynthesis and ripening of tomato fruit. J Exp Bot 60:1579–1588. doi:10.1093/jxb/erp026  

52. Zhang ZL, Chen J, Zhang DP (1996) The abscisic acid binding proteins and their properties in grapevine fruits. China J Biochem Mol Biol 38:930–935