Article | . 2017 Vol. 35, Issue. 1
Caffeoyl Shikimate Esterase has a Role in Endocarp Lignification in Peach (Prunus persica L.) Fruit



College of Plant Science and Technology,Beijing University of Agriculture1
College of Biological Science and Engineering,Beijing University of Agriculture2
Beijing Collaborative Innovation Center for Eco-environmental Improvement with Forestry and Fruit Trees, Beijing University of Agriculture,3




2017.. 59:68


PDF XML




Caffeoyl shikimate esterase (CSE) is a key enzyme in lignin synthesis in Arabidopsis thaliana . To determine the role of CSE in lignification of the endocarp in peach (Prunus persica L.) fruit, we cloned and characterized the P. persica CSE homolog, which we designated PpCSE. The 954 - bp PpCSE gene encoded a 317 - amino acid polypeptide. PpCSE expression patterns in the mesocarp and endocarp changed during peach fruit development. There was no significant difference between the expression levels of PpCSE in the mesocarp and endocarp at 39 and 44 days after full bloom (DAFB), but the expression level of PpCSE in the endocarp at 50 and 55 DAFB was 80.73 and 72.75 times higher, respectively, than that in the mesocarp. During peach fruit development, PpCSE expression in the endocarp increased rapidly; the relative PpCSE expression level at 50 DAFB was 122.70 times higher than that at 39 DAFB. At the protein level, CSE was detected in the peach fruit endocarp at 50 and 55 DAFB. Our study suggests that PpCSE expression during peach fruit development is closely related to the degree of endocarp lignification.



1. Abeles FB and Biles CL (1991) Characterization of peroxidases in lignifying peach fruit endocarp. Plant Physiol 95:269-273.doi:10.1104/pp.95.1.269  

2. Amthor JS (2003) Efficiency of lignin biosynthesis: a quantitative analysis. Ann Bot 91: 673-695. doi:10.1093/aob/mcg073  

3. Arvelakis S, Gehrmann H and Beckmann M (2005) Preliminary results on the ash behavior of peach stones during fluidized bed gasification: evaluation of fractionation and leaching as pre-treatments. Biomass Bioenerg 28: 331-338. doi:10.1016/ j.biombioe.2004.08.016  

4. Baucher M, Monties B and Van Montagu M (1998) Biosynthesis and genetic engineering of lignin. Crit Rev Plant Sci 17: 125-197. doi:10.1016/S0735-2689(98)00360-8  

5. Chen F and Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25: 759-761. doi:10.1038/nbt1316  

6. Dardick C, Callahan AM, Chiozzotto R, Schaffer RJ, Piagani MC and Scorza R (2010) Stone formation in peach fruit exhibits spatial coordination of the lignin and flavonoid pathways and similarity to Arabidopsis dehiscence. BMC Biol 8: 13-30. doi:10.1186/1741- 7007-8-13  

7. Dardick C and Callahan AM (2014) Evolution of the fruit endocarp: molecular mechanisms underlying adaptations in seed protection and dispersal strategies. Front Plant Sci 5:284-294. doi:10.3389/fpls.2014.00284  

8. Deng Z, Zhang X, Tang W, Oses-Prieto JA, Suzuki N, Gendor JM, Chen H, Guan S, Chalkley RJ, Peterman TK, Burlingame AL and Wang ZY (2007) A proteomics study of brassinosteroid response in Arabidopsis. Mol and Cell Proteomics 6: 2058-2071. doi:10.1074/ mcp.M700123-MCP200  

9. Douglas CJ (1996) Phenylpropanoid metabolism and lignin biosynthesis: from weeds to trees. Trends Plant Sci 1:171-178. doi:10.1016/1360-1385(96)10019-4  

10. Doster MA and Michailides TJ (1999) Relationship between shell discoloration of pistachio nuts and incidence of fungal decay and insect infestation. Plant Dis 83: 259-264. doi:10.1094/PDIS.1999.83.3.259  

11. Escamilla-Trevin∨o LL, Shen H, Hemandez T, Yin Y, Xu Y and Dixon RA (2014) Early lignin pathway enzymes and routes to chlorogenic acid in switchgrass ( L.). Plant Mol Biol 84:565-576. doi:10.1007/s11103-013-0152-y  

12. Ha CM, Escamilla-Trevino L, Yarce JCS, Kim H, Ralph J, Chen F and Dixon RA (2016) An essential role of caffeoyl shikimate esterase in monolignol biosynthesis in . Plant J 86: 363-375. doi:10.1111/tpj.13177  

13. Han ZJ, You ZJ, Guan W, Ma HP and Liu ZM (2015) Relationship between peach pit-splitting and specific vascular bundle development and nitrogen. Int J Fruit Sci 15:1-11. doi:10.1080/15538362.2015.1009968  

14. Hu H, Liu Y, Shi GL, Liu YP, Wu RJ, Yang AZ, Wang Y, Hua BG and Wang YN (2011) Proteomic analysis of peach endocarp and mesocarp during early fruit development. Physiol Plantarum 142:390-406. doi:10.1111/j.1399-3054.2011.01479.x  

15.  Kirk TK and Obst JR (1988) Lignin determination. Methods Enzymol 161: 87-101. doi:10.1016/0076-6879(88)61014-7  

16. Koukios EG, Arvelakis S, Gehrmann H and Beckmann M (2005) Preliminary results on the ash behavior of peach stones during fluidized bed gasification: evaluation of fractionation and leaching as pre-treatments. Biomass and Bioenerg. 28: 331-338. doi:10.1016/j.biombioe.2004.08.016  

17. Marie B, Bernard M, Marc Van M and Wout B (1998) Biosynthesis and genetic engineering of lignin. Cri Rev Plant Sci 17: 125-197. doi:10.1016/S0735-2689(98)00360-8  

18. Mendu V, Harman-Ware AE, Crocker M, Jae J, Stork J, Morton S, Placido A, Huber G and Debolt S (2011) Identification and thermochemical analysis of high-lignin feedstocks for biofuel and biochemical production. Biotechnol Biofuels 4:43-56. doi:10.1186/1754-6834-4-43  

19. Schuster B and Rjetey J (1995) The mechanism of action of phenylalanine ammonia-lyase: The role of prosthetic dehydroalanine.Biochemistry 92: 8433-8437. doi:10.1073/pnas.92.18.8433  

20. Shi MY, Li Y, Zhang W, Yu J and Liu YP (2013) Lignin deposition in the endocarp of peach fruit. J Beijing University of Agriculture 28:25-28 (in Chinese)  

21. Simmons BA, Loqué D and Ralph J (2010) Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol 13: 312-319. doi:10.1016/j.pbi.2010.03.001  

22. Sticklen MB (2008) Plant genetic engineering for biofuel production: towards affordable cellulosic ethanol. Nat Rev Genet 9: 433-443.doi:10.1038/nrg2336  

23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M and Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28: 2731-2739. doi:10.1093/ molbev/msr121  

24. Tani E, Polidoros A and Tsaftaris A (2007) Characterization and expression analysis of FRUITFULL-and SHATTERPROOF-like genes from peach (Prunus persica ) and their role in split-pit formation. Tree Physiol 27: 649-659. doi:10.1093/treephys/27.5.649   

25. Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. doi:10.1093/nar/22.22.4673  

26. Wang JP, Naik PP, Chen HC, Shi R, Lin CY, Liu J, Shuford CM, Li Q, Sun YH, Tunlaya-Anukit S, Williams CM, Muddiman DC, Ducoste JJ, Sederoff RR and Chiang VL (2014) Complete proteomic-based enzyme reaction and inhibition kinetics reveal how monolignol biosynthetic enzyme families affect metabolic flux and lignin in Populus trichocarpa . Plant Cell 26: 894-914. doi:10.1105/tpc.113.120881  

27. Vanholme R, Cesarino I, Rataj K, Xiao Y, Sundin L, Goeminne G, Kim H, Cross J, Morreel K, Araujo P, Welsh L, Haustraete J, Mclellan C, Vanholme B, Ralph J, Simpson GG, Halpin C and Boerjan W (2013) Caffeoyl shikimate esterase (CSE) is an enzyme in the lignin biosynthetic pathway in Arabidopsis . Science 341:1103-1106. doi:10.1126/science.1241602