Article | 10. 2016 Vol. 34, Issue. 5
Production of Hypo- and Hypertetraploid Seedlings from Open-, Self-, and Cross-Pollinated Hypo- and Hypertetraploid Grape



Gangwon Provincial Agricultural Research and Extension Services1
Agriculture and Life Science Research Institute, Kangwon National University2
Department of Horticulture, Kangwon National University3




2016.10. 771:778


PDF XML




Seedless grape (Vitis spp.) cultivars with large berries can be developed from hypo- and hypertetraploid seedlings. The low occurrence of hypo- and hypertetraploid seedlings, however, has impeded the breeding of new hypo- and hypertetraploid grape varieties. In order to establish hypoand hypertetraploid seedlings, we examined the chromosome numbers in seedlings of self-, open-, and cross-pollinated hypotetraploid ‘Takao’ and hypertetraploid ‘RB9127K’ grape. Three of the five seedlings (60%) from ‘Takao’ were aneuploid, including one with 74 chromosomes (2n=4x-2) and two with 75 chromosomes (2n=4x-1). In ‘RB9127K’, 26 of the 193 seedlings (13.5%) were aneuploid, including three seedlings with 75 chromosomes (2n=4x-1), 18 with 77 chromosomes (2n=4x+1), and five with 78 chromosomes (2n=4x+2). The high frequency of aneuploids from ‘Takao’ and ‘RB9127K’ grape indicates that meiosis in hypo- and hypertetraploid female parents is prone to segregation error. These results suggest that various hypo- or hypertetraploid seedlings can be successfully produced using hypo- or hypertetraploid grapes as female parents, which can contribute to the development of new seedless grape varieties with large berries.



1. Abreu I, Costa I, Oliveira M, Cunha M, De Castro R (2006) Ultrastructure and germination of Vitis vinifera cv Loureiro pollen.Protoplasma 228:131-135. doi:10.1007/s00709-006-0167-1  

2. Bacchi O (1940) Observacoes citologicas em Citrus: I. Numero de coromosomios de algumas especies evariedades. J Agron 3:249-258  

3. Bayliss MW (1973) Origin of chromosome number variation in cultured plant cells. Nature 246:529-530. doi:10.1038/246529a0  

4. Edwards GA, Brown MS, Niles GA, Naqi SA (1980) Monosomics of cotton. Crop Sci 20:527-528. doi:10.2135/cropsci1980.0011183X002000040027x  

5. Ellerstrom S, Sjodin J (1966) Frequency and vitality of aneuploids in a population of tetraploid red clover. Hereditas 55:166-182. doi:10.1111/j.1601-5223.1966.tb02045.x  

6. Esen A, Soost RK (1972) Seed development in Citrus with special reference of 2x × 4x crosses. Amer J Bot 60:448-462. doi:10.2307/2441501  

7. Fukushima E, Tokumasu S (1957) On the occurrence of aneuploidy in the offspring of the artificially induced autotetraploid plants in Japanese radish (Raphanus sativus L.) and Chinese cabbage (Brassica pekinensis Rupr.). J Fac Agr Kyushu Univ 11:1-23   

8. Gao L, Diarso M, Zhang A, Zhang H, Dong Y, Liu L, Liu Z, Liu B (2016) Heri alteration of DNA methylation induced by whole-chromosome aneuploidy in wheat. New Phytol 209:364-375. doi:10.1111/nph.13595  

9. Gao SL, Zhu DN, Cai ZH, Xu DR (1996) Autotetraploid plants from colchicine-treated bud culture of Salvia miltiorrhiza Bge. Plant Cell Tiss Org 47:73-77. doi:10.1007/BF02318968  

10. Gavrilenko T, Thieme R, Rokka VM (2001) Cytogenetic analysis of Lycopersicon esculentum (+) Solanum etuberosum somatic hybrids and their androgenetic regenerants. Theor Appl Genet 103:231-239. doi:10.1007/s001220100626  

11. Hardion L, Verlasque R, Rosato M, Rosell IA, Vila B (2015) Impact of polyploidy on fertility variation of Mediterranean Arundo L. (Poaceae). Comptes Rendus Biologies 338:298-306. doi:10.1016/j.crvi.2015.03.013  

12. Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186:1231-1245. doi:10.1534/genetics.110.121079  

13. Heo JY, Park SM (2015) Breeding of a new triploid seedless table grape cultivar ‘Paradise’. J Am Pomol Soc 69:170-172  

14. Heo JY, Park KS, Yun HK, Park SM (2007) Degree of abortion and germination percentage in seeds derived from interploid crosses between diploid and tetraploid grape cultivars. Hort Environ Biotechnol 48:115-121  

15. Huettel B, Kreil DP, Matzke M, Matzke AJM (2008) Effects of aneuploidy on genome structure, expression, and interphase organization in Arabidopsis thaliana. PLoS Genet 4:e1000226. doi: 10.1371/journal.pgen.1000226  

16. Khush GS (1973) Cytogenetics of aneuploids. Academic Press, New York, USA, pp 301   

17. Lewis WH (1980) Polyploidy in species populations. In WH Lewis, ed, Polyploidy: biological relevance. Plenum Press, New York, USA, pp 132-192. doi:10.1007/978-1-4613-3069-1_6  

18. Muntzing A (1943) Aneuploidy and seed shrivelling in tetraploid rye. Hereditas 29:65-75. doi:10.1111/j.1601-5223.1943.tb02713.x   

19. Park SM (2010) Effect of plant growth regulators on growth and quality of fruits in triploid hybrid grapes. Kor J Hort Sci Technol 28:1-7  

20. Park SM (2011) Breeding of a seedless table grape cultivar ‘Heukusul’ (Vitis sp.) with high quality. Kor J Hort Sci Technol 29:507-509  

21. Park YS, Kim IJ, Park SM (2010) Selection of hypo-and hyper-tetraploid seedlings from abnormal cotyledons seedlings obtained during crossing of tetraploid grapes (Vitis complexes). Korean J Hort Sci Technol 28:810-817  

22. Park YS, Heo JY, Um NY, Bang SB, Park SM (2015) Growth and fruit characteristics of hypo-, hyper-tetraploid grapes. Korean J Breed Sci 47:192-198. doi:10.9787/KJBS.2015.47.3.192  

23. Pringle GJ, Murray BG (1992) Polyploidy and aneuploidy in the tamarillo Cyphomandra betacea (Cav.) Sendt. (Solanaceae).II. Induction of tetraploidy, interploidy crosses and aneuploidy. Plant Breeding 108:139-148. doi:10.1111/j.1439-0523.1992.tb00113.x   

24. Rick CM, Barton DW (1954) Cytological and genetical identification of the primary trisomics of the tomato. Genetics 39:640-666  

25. Sarikhani H, Wakana A (2006) In vitro induction of aneuploid forms of tetraploid grapes by para-fluorophenylalanine. J Fac Agr Kyushu Univ 51:257-260   

26. Silva N, Mendes-Bonato AB, Sales JGC, Pagliarini MS (2011) Meiotic behavior and pollen viability in Moringa oleifera (Moringaceae) cultivated in southern Brazil. Genet Mol Res 10:1728-1732. doi:10.4238/vol10-3gmr1490  

27. Souza MM, Pereira TNS, Viana AP, Pereira MG, Bernacci LC, Sudr CP, Silva LC (2003) Meiotic irregularities and pollen viability in   

28. Passiflora edmundoi Sacco (Passifloraceae). Caryologia, 56:157-165. doi:10.1080/00087114.2003.1010589320  

29. Wang ZY, Ge Y, Scott M, Spangenberg G (2004) Viability and longevity of pollen from transgenic and nontransgenic tall fescue (Festuca arundinacea) (Poaceae) plants. Am J Bot 91:523-530. doi:10.3732/ajb.91.4.523  

30. Weber DF (1991) Monosomic analysis in maize and other diploid crop plants. In PK Gupta and T Tsuchiya, ed, Chromosome Engineering in Plants: Genetics, Breeding, Evolution. Elsevier, Amsterdam, NL, pp 181-209. doi:10.1016/b978-0-444-88259-2.50013-8   

31. Yamane H, Kurihara A, Tanaka R (1978) Research on polyploid grape breeding. I. : chromosome counts of large berried Japanese grape varieties. Bull Fruit Tree Res Sta 2:1-8