Article | 10. 2016 Vol. 34, Issue. 5
Assessment of Phytochemicals, Quality Attributes,and Antioxidant Activities in Commercial Tomato Cultivars



Department of Horticulture, College of Agriculture & Life Sciences, Chonbuk National University1
National Institute of Horticultural & Herbal Science, Rural Development Administration2
Institute of Agricultural Science & Technology, Chonbuk National University3




2016.10. 677:691


PDF XML




To assess South Korean commercial tomato cultivars, regular and cherry tomato cultivars were grown in the greenhouse and evaluated for color attributes, titratable acidity, pH, total soluble solids, carotenoids (lycopene and β-carotene), total phenols, flavonoids, vitamin C, and antioxidant activity. Significant differences (p <0.05 using Duncan’s multiple range test (DMRT)) were observed in the levels of most phytochemicals, quality parameters, and antioxidant activity among the twenty South Korean tomato cultivars tested. Lycopene and β-carotene contents varied significantly (p <0.05 using DMRT), from 0.95 mg∙100 g-1 to 5.12 mg∙100 g-1 and 0.65 mg∙100 g-1 to 3.56 mg∙100 g-1 of fresh weight, respectively. β-carotene contents exhibited the highest genetic variation (59.2%), followed by naringenin (52.8%) and other phytochemicals. Most of the cherry tomato cultivars had statistically higher levels (p <0.05 using DMRT) of carotenoids, phenols, flavonoids, vitamin C, and antioxidant activity compared to the regular tomato varieties, suggesting their higher nutritional value. Lycopene content was highest in the cultivars YoYo, Jicored, Titi-Chal, TY-Endorphin, and Rubyking. Cultivars Rubyking, TY-Endorphin, and Titi-Chal also showed relatively higher antioxidant activities in three assays: 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and ferric ion reducing antioxidant power (FRAP) assays. All the antioxidants, except luteolin, were positively correlated with antioxidant activities; the highest correlation was observed between total phenol and antioxidant activities, followed by the correlation between rutin and vitamin C. Cultivars identified to have superior nutritional status would be useful in tomato breeding programs to further improve quality and health benefits of tomatoes for the fresh and processed markets.



1. Aguilo-Aguayo I, Soliva-Fortuny R, Martin-Belloso O (2010) Volatile compounds and changes in flavour-related enzymes during cold storage of high-intensity pulsed electric field and heat-processed tomato juices. J Sci Food Agric 90:1597-1604. doi:10.1002/jsfa.3984  

2. Aires A, Fernandes C, Carvalho R, Bennett RN, Saavedra MJ, Rosa EAS (2011) Seasonal effects on bioactive compounds and antioxidant capacity of six economically important Brassica vegetables. Molecules 16:6816-6832. doi:10.3390/molecules16086816  

3. Benzie IFF, Strain JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal Biochem 239:70-76. doi:10.1006/abio.1996.0292  

4. Bhandari SR, Jung BD, Baek HY, Lee YS (2013) Ripening-dependent changes in phytonutrients and antioxidant activity of red pepper (Capsicum annuum L.) fruits cultivated under open-field conditions. HortScience 48:1275-1282  

5. Bhandari SR, Yoon MK, Kwak JH (2014) Contents of phytochemical constituents and antioxidant activity of 19 garlic (Allium sativum L.) parental lines and cultivars. Hort Environ Biotechnol 55:138-147. doi:10.1007/s13580-014-0155-x  

6. Breksa III AP, Robertson LD, Labate JA, King BA, King DE (2015) Physicochemical and morphological analysis of ten tomato varieties identifies quality traits more readily manipulated through breeding and traditional selection methods. J Food Comp Anal 42:16- 25. doi:10.1016/j.jfca.2015.02.011  

7. Campbell, JK, Canene-Adams K, Lindshield BL, Boileau TWM, Clinton SK, Erdman Jr JW (2004) Tomato phytochemicals and prostate cancer risk. J Nutr 134:3486S-3492S  

8. Causse, M, Saliba-Colombani V, Lesschaeve I, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theor Appl Genet 102:273-283. doi:10.1007/s001220051644  

9. Choi SH, Kim DS, Kozukue N, Kim HJ, Nishitani Y, Mizuno M, Levin CE, Friedman M (2014) Protein, free amino acid, phenolic,β-carotene, and lycopene content, and antioxidative and cancer cell inhibitory effects of 12 green house-grown commercial cherry tomato varieties. J Food Comp Anal 34:115-127. doi:10.1016/j.jfca.2014.03.005  

10. Erba D, Casiraghi MC, Ribas-Agusti A, Caceres R, Marfa O, Castellari M (2013) Nutritional value of tomatoes (Solanum lycopersicum L.) grown in greenhouse by different agronomic techniques. J Food Comp Anal 31:245-251. doi:10.1016/j.jfca.2013.05.014  

11. FAO (2013) Agricultural statistical database. http://faostat.fao.org. Accessed 19 December 2015  

12. George S, Brat P, Alter P, Amiot MJ (2005) Rapid determination of polyphenols and vitamin C in plant-derived products. J Agric Food Chem 53:1370-1373. doi:10.1021/jf048396b  

13. Hertog MGL, Hollman PCH, Venema DP (1992) Optimization of a quantitative HPLC determination of potentially anticarcinogenic flavonoids in vegetables and fruits. J Agric Food Chem 40:1591-1598. doi:10.1021/jf00021a023  

14. Kalogeropoulos, N, Chiou A, Pyriochou V, Peristeraki A, Karathanos VT (2012) Bioactive phytochemicals in industrial tomatoes and their processing byproducts. LWT- Food Sci Technol 49:213-216. doi:10.1016/j.lwt.2011.12.036  

15. Kaur C, Walia S, Nagal S, Walia S, Singh J, Singh BB, Saha S, Singh B, Kalia P, et al (2013) Functional quality and antioxidant composition of selected tomato (Solanum lycopersicon L) cultivars grown in Northern India. LWT- Food Sci Technol 50:139-145. doi:10.1016/j.lwt.2012.06.013  

16. Kavitha P, Shivashankara KS, Rao VK, Sadashiva AT, Ravishankar KV, Sathish GJ (2014) Genotypic variability for antioxidant and quality parameters among tomato cultivars, hybrids, cherry tomatoes and wild species. J Sci Food Agric 94:993-999. doi:10.1002/ jsfa.6359  

17. Koh E, Wimalasiri KMS, Chassy AW, Mitchell AE (2009) Content of ascorbic acid, quercetin, kaempferol and total phenolics in commercial broccoli. J. Food Comp Anal 22:637-643. doi:10.1016/j.jfca.2009.01.019   

18. Koleva II, van Beek TA, Linssen JPH, de Groot A, Evstatieva LN (2002) Screening of plant extracts for antioxidant activity: a comparative study on three testing methods. Phytochem Anal 13:8-17. doi:10.1002/pca.611  

19. Kotikova Z, Lachman J, Hejtmankova A, Hejtmankova K (2011) Determination of antioxidant activity and antioxidant content in tomato varieties and evaluation of mutual interactions between antioxidants. LWT- Food Sci Technol 44:1703-1710. doi:10.1016/ j.lwt.2011.03.015  

20. Kubota C, Kroggel M, Torabi M, Dietrich KA, Kim HJ, Fonseca J, Thomson CA (2012) Changes in selected quality attributes of greenhouse tomato fruit as affected by pre- and postharvest environmental conditions in year-round production. HortScience 47:1698-1704   

21. Kuscu H, Turhan A, Ozmen N, Aydinol P, Demir AO (2014) Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hort Environ Biotechnol 55:103-114. doi:10.1007/s13580-014-0180-9  

22. Li H, Deng Z, Liu R, Loewen S, Tsao R (2013) Carotenoid compositions of coloured tomato cultivars and contribution to antioxidant activities and protection against H2O2-induced cell death in H9c2. Food Chem 136:878-888. doi:10.1016/j.foodchem.2012.08.020  

23. Manach C, Mazur A, Scalbert A (2005) Polyphenols and prevention of cardiovascular diseases. Curr Opin Lipidol 16:77-84. doi:10.1097/00041433-200502000-00013   

24. Nagata M, Yamashita I (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruits. J Jpn Soc Food Sci Technol 39:925-928. doi:10.3136/nskkk1962.39.925  

25. Nencini C, Menchiari A, Franchi GG, Micheli L (2011) In vitro antioxidant activity of aged extracts of some Italian Allium species. Plant Foods Hum Nutr 66:11-16. doi:10.1007/s11130-010-0204-2  

26. Oms-Oliu G, Hertog MLATM, Van de Poel B, Ampofo-Asiama J, Geeraerd AH, Nicolai BM (2011) Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol Technol 62:7-16. doi:10.1016/ j.postharvbio.2011.04.010  

27. Pinela J, Barros L, Carvalho AM, Ferreira ICFR (2012) Nutritional composition and antioxidant activity of four tomato (Lycopersicon esculentum L.) farmer’ varieties in Northeastern Portugal homegardens. Food Chem Toxicol 50:829-834. doi:10.1016/ j.fct.2011.11.045   

28. Pourcel L, Routaboul JM, Cheynier V, Lepiniec L, Debeaujon I (2006) Flavonoid oxidation in plants: From biochemical properties to physiological functions. Trends Plant Sci 12:29-36. doi:10.1016/j.tplants.2006.11.006  

29. Rao AV, Rao LG (2007) Carotenoids and human health. Pharmacol Res 55:207-216. doi:10.1016/j.phrs.2007.01.012  

30. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231-1237.doi:10.1016/S0891-5849(98)00315-3  

31. Riga P (2015) Effect of rootstock on growth, fruit production and quality of tomato plants grown under low temperature and light conditions. Hort Environ Biotechnol 56: 626-638. doi:10.1007/s13580-015-0042-0  

32. Rissanen TH, Voutilainen S, Nyyssonen K, Salonen R, Kaplan GA, Salonen JT (2003) Serum lycopene concentrations and carotid atherosclerosis: The kuopio ischaemic heart disease risk factor study. Am J Clin Nutr 77:133-138  

33. Singleton VL, Rossi JAJr (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Viticult 16:144-158  

34. Spinola V, Mendes B, Camara JS, Castilho PC (2012) An improved and fast UHPLC-PDA methodology for determination of L-ascorbic and dehydroascorbic acids in fruits and vegetables. Evaluation of degradation rate during storage. Anal Bioanal Chem 403:1049-1058. doi:10.1007/s00216-011-5668-x  

35. Stevens MA, Rick CM (1986) Genetics and breeding: fruit quality. In JG Atherton, J. Rudich, eds, The tomato crop: A scientific basis for improvement. Chapman & Hall, London, pp 35-109. doi:10.1007/978-94-009-3137-4_2  

36. Taber H, Perkins-Veazie P, Li S, White W, Rodermel S, Xu Y (2008) Enhancement of tomato fruit lycopene by potassium is cultivar dependent. HortScience 43:159-165.  

37. Tinyane PP, Sivakumar D, Soundy P (2013) Influence of photo-selective netting on fruit quality parameters and bioactive compounds in selected tomato cultivars. Sci Hortic 161:340-349. doi:10.1016/j.scienta.2013.06.024  

38. Vallverdu-Queralt A, Medina-Remon A, Casals-Ribes I, Lamuela-Raventos RM (2012) Is there any differences between the phenolic content of organic and conventional tomato juices? Food Chem 130:222-227. doi:10.1016/j.foodchem.2011.07.017  

39. Vinha AF, Alves RC, Barreira SVP, Castro A, Costa ASG, Oliveira MBPP (2014) Effect of peel and seed removal on the nutritional value and antioxidant activity of tomato (Lycopersicon esculentum L) fruits. LWT-Food Sci Technol 55:197-202. doi:10.1016/j.lwt.2013.07.016