Article | 8. 2016 Vol. 34, Issue. 4
Seed Germination Response to Temperature, Cold Stratification Period, and Gibberellin Treatment in Spiraea fritschiana



Department of Horticulture, Biotechnology and Landscape Architecture, Seoul Women’s University1
Useful Plant Resources Center, Korea National Arboretum of Korea Forest Service2




2016.8. 557:563


PDF XML




To improve the germination of Spiraea fritschiana seeds for mass propagation, we evaluated the effect of a range of temperatures, cold stratification periods, and gibberellic acid (GA3) treatments on three germination characteristics. Final germination percentage (FGP) increased as the temperature for seed germination increased, up to 30°C, while the mean germination time (MGT) and the mean number of days to 30% germination (T30) decreased when seeds were germinated at 25-30°C. The optimum germination temperature of S. fritschiana seeds is approximately 30°C considering FGP, MGT, and T30 together. FGP increased with the duration of cold stratification up to a period of 6 weeks, but declined after 8 weeks of cold stratification, as prolonged cold stratification can induce dormancy with a resultant decline in germination. Pretreatment with 6-8 weeks of cold stratification or soaking seeds in distilled water or 500 mg·L-1 GA3 for 24 h accelerated and increased the germination of S. fritschiana seeds, regardless of temperature. However, further study might be required to evaluate the effect of GA3 concentrations lower than 500 mg·L-1 on the promotion of germination in S. fritschiana seeds.



1. Baskin CC, Baskin JM (1998) A geographical perspective on germination ecology: temperate and arctic zones. In Baskin CC, Baskin JM, eds, Seeds ecology, biogeography, and evolution of dormancy and germination, Academic Press, San Diego, USA, pp 331-458. doi:10.1016/B978-012080260-9/50009-9  

2. Bewley JD, Black M (1994) Dormancy and the control of germination. In Bewley JD, Black M, eds, Seeds physiology of development and germination, Plenum Press, New York, USA, pp 199-271. doi:10.1007/978-1-4899-1002-8_5  

3. Chen S, Chien C, Chung J, Yang Y, Kuo S (2007) Dormancy-break and germination in seeds of Prunus campanulata (Rosaceae): role of covering layers and changes in concentration of abscisic acid and gibberellins. Seed Sci Res 17:21-32. doi:10.1017/S0960258507383190  

4. Cho YH, Kim ES, Kang HK, Cheong YM (2012) A study on characteristics of seed germination of native plants for revegetation on the slope of river bank. J Korean Environ Res Reveg Technol 15:103-115. doi:10.13087/kosert.2012.15.2.103  

5. De Mello AM, Streck NA, Blankenship EE, Paparozzi ET (2009) Gibberellic acid promotes germination in Penstemon digitalis cv. Husker Red. HortScience 44:870-873  

6. Demir I, Celikkol T, Sarikamis G, Eksi C (2011) Vigor tests to estimate seedling emergence potential and longevity in Viola seed lots. HortScience 46:402-405  

7. Derkx MPM, Karssen CM (1993) Effects of light and temperature on seed dormancy and gibberellin-stimulated germination of Arabidopsis thaliana: studies with gibberellin-deficient and -insensitive mutants. Physiol Plant 89:360-368. doi:10.1111/j.1399-3054.1993.tb00167.x  

8. Ellis RH, Roberts EH (1981) The quantification of ageing and survival in orthodox seeds. Seed Sci Technol 9:373-409  

9. Fenner M (1991) The effects of the parent environment on seed germinability. Seed Sci Res 1:75-84. doi:10.1017/S0960258500000696  

10. Kim NC, Yoon JS, Bae SW, Son WJ, Jung SC (2002) Seeding of the woody plants for the quick-coverage of the slopes. J Korean Environ Res Reveg Technol 5:72-85  

11. Kim TJ, Sun BY (1996) Taxonomy of the genus Spiraea in Korea. Korean J Plant Tax 26:191-212  

12. Kitchen SG, Meyer SE (1991) Seed germination of intermountain penstemons as influenced by stratification and GA3 treatments. J Environ Hortic 9:51-56  

13. Korea NIBR (2014) Species Korea. http://www.nibr.go.kr/species/home/species/ spc01001m.jsp?cls_id=52922&from_sch=Y. Accessed 7 September 2015  

14. Matlack GR (1993) Microenvironment variation within among forest edge sites in the eastern United States. Biol Cons 66:185-194. doi:10.1016/0006-3207(93)90004-K  

15. McLean A (1967) Germination of forest range species from southern British Columbia. J Range Mgt 20:321-322. doi:10.2307/3895983  

16. Mickelbart MV, Gosney MJ, Camberato J, Stanton KM (2012) Soil pH effects on growth and foliar nutrient concentrations of Spiraea alba Du Roi and Spiraea tomentosa L. HortScience 47:902-906  

17. Milberg P, Andersson L (1998) Does cold stratification level out differences in seed germinability between populations? Plant Ecol 134:225-234. doi:10.1023/A:1009793119466  

18. Ogawa M, Hanada A, Yamauchi Y, Kuwahara A, Kamiya Y, Yamaguchi S (2003) Gibberellin biosynthesis and response during Arabidopsis seed germination. The Plant Cell 15:1591-1604. doi:10.1105/tpc.011650  

19. Phartyal SS, Godefroid S, Koedam N (2009) Seed development and germination ecophysiology of the invasive tree Prunus serotina (Rosaceae) in a temperate forest in Western Europe. Plant Ecol 204:285-294. doi:10.1007/s11258-009-9591-6  

20. Potter D, Still SM, Grebenc T, Ballian D, Božič G, Franjiæ J, Kraigher H (2007) Phylogenetic relationship in tribe Spiraeeae (Rosaceae) inferred from nucleotide sequence data. Plant Syst Evol 266:105-118. doi:10.1007/s00606-007-0544-z  

21. Qu L, Wang X, Chen Y, Scalzo R (2005) Commercial seed lots exhibit reduced seed dormancy in comparison to wild seed lots of Echinacea purpurea. HortScience 40:1843-1845  

22. Ribeiro LM, Garcia QS, Mller M, Munn -Bosch S (2015) Tissue-specific hormonal profiling during dormancy release in macaw palm seeds. Physiol Plant 153:627-642. doi:10.1111/ppl.12269  

23. Wilson RL, Hoch WA (2009) Identification of sterile, noninvasive cultivars of Japanese spirea. HortScience 44:2031-2034  

24. Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367-378. doi:10.1105/tpc.018143