Article | 04. 2016 Vol. 34, Issue. 2
Establishment of discrimination system using multivariate analysis of FT-IR spectroscopy data from different species of artichoke (Cynara cardunculus var. scolymus L.)



Agricultural Research Institute for Climate Change, NIHHS, RDA1




2016.04. 324:330


PDF XML




To determine whether FT-IR spectral analysis based on multivariate analysis for whole cell extracts can be used to discriminate between artichoke (Cynara cardunculus var. scolymus L.) plants at the metabolic level, leaves of ten artichoke plants were subjected to Fourier transform infrared(FT-IR) spectroscopy. FT-IR spectral data from leaves were analyzed by principal component analysis (PCA), partial least square discriminant analysis (PLS-DA) and hierarchical clustering analysis (HCA). FT-IR spectra confirmed typical spectral differences between the frequency regions of 1,700-1,500, 1,500-1,300 and 1,100-950 cm-1, respectively. These spectral regions reflect the quantitative and qualitative variations of amide I, II from amino acids and proteins (1,700-1,500 cm-1), phosphodiester groups from nucleic acid and phospholipid (1,500-1,300 cm-1) and carbohydrate compounds (1,100-950 cm-1). PCA revealed separate clusters that corresponded to their species relationship. Thus, PCA could be used to distinguish between artichoke species with different metabolite contents. PLS-DA showed similar species classification of artichoke. Furthermore these metabolic discrimination systems could be used for the rapid selection and classification of useful artichoke cultivars.



1. Acquadro A, Portis E, Lee D, Donini P, Lanteri S (2005) Development and characterization of microsatellite markers in Cynara cardunculus L. Genome 48:217-225. doi:10.1139/g04-111  

2. Adzet T, Puigmacia M (1985) High-performance liquid chromatography of caffeoylquinic acid derivatives of Cynara scolymus L. leaves. J Chromatogr 348:447-452. doi:10.1016/S0021-9673(01)92486-0  

3. Chen L, Carpita NC, Reiter WD, Wilson RH, Jeffries C, McCann MC (1998) A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J 16:385-392. doi:10.1046/j.1365-313x.1998.00301.x   

4. D'Souza L, Devi P, Shridhar MPD, Naik CG (2008) Use of Fourier Transform Infrared (FTIR) Spectroscopy to Study Cadmium-Induced Changes in Padina Tetrastromatica (Hauck) Anal. Chem Insights 3:135-143  

5. Dumas P, Miller L (2003) The use of synchrotron infrared microspectroscopy in biological and biomedical investigations. Vib Spectrosc 32:3-21. doi:10.1016/S0924-2031(03)00043-2  

6. Fiehn O, Kopka J, Drmann P, Altmann T, Trethewey R, Willmitzer L (2000) Metabolite profiling for plant functional genomics. Nat Biotechnol 18:1157-1161. doi:10.1038/81137  

7. Francisco AA, Pedro GV (2003) The health and nutritional virtues of artichokes: from folklore to science. Acta Hortic 660:25-31. doi:10.17660/ActaHortic.2004.660.1  

8. Gallardo-Velázquez T, Osorio-Revilla G, Loa MZ, Rivera-Espinoza Y (2009) Application of FTIR-HATR spectroscopy and multivariate analysis to the quantification of adulterants in Mexican honeys. Food Res Int 42:313-318. doi:10.1016/j.foodres.2008.11.010   

9. Goodacre R, Timmins EM, Burton R, Kaderbhai N, Kell DB, Rooney PJ (1998) Rapid identification of urinary tract infection bacteria using hyperspectral whole-organism fingerprinting and artificial neural networks. Microbiology 144:1157-1170. doi:10.1099/00221287-144-5-1157  

10. Kim SW, Ban SH, Chung H, Cho SH, Chung HJ, Choi PS, Yoo OJ, Liu JR (2004) Taxonomic discrimination of higher plants by multivariate analysis of Fourier transform infrared spectroscopy data. Plant Cell Rep 23:246-250. doi:10.1007/s00299-004-0811-1  

11. Kim SW, Kwon YK, Seo JM, Woo TH, Liu JR (2011) Prediction and discrimination of taxonomic relationship within Orostachys species using FT-IR spectroscopy combined by multivariate analysis. J Plant Biotechnol 38:9-14. doi:10.5010/JPB.2011.38.1.009  

12. Krishnan P, Kruger NJ, Ratcliffe RG (2005) Metabolite fingerprinting and profiling in plants using NMR. J Exp Bot 56:255-265. doi:10.1093/jxb/eri010  

13. Lanteri S, Acquadro A, Comino C, Mauro R, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke ( var. L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theor Appl Genet 112:1532-1542. doi:10.1007/s00122-006-0256-8  

14. Lopez-Sanchez M, Ayora-Canada MJ, Molina-Diaz A (2010) Olive fruit growth and ripening as seen by vibrational spectroscopy. J Agric Food Chem 58:82-87. doi:10.1021/jf902509f  

15. Parker FS (1983) Applications of infrared, Raman and resonance Raman spectroscopy in biochemistry. Plenum Press, NY, USA  

16. Portis E, Scaglione D, Acquadro A, Mauromicale G, Mauro R, Knapp SJ, Lanteri S (2012) Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Res Notes 5:252. doi:10.1186/1756-0500-5-252  

17. Schulz H, Baranska M (2007) Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib Spectrosc 43:13-25. doi:10.1016/j.vibspec.2006.06.001  

18. Seong KC, Kim CH, Lee JS, Um YC, Kang KH (2008) Selection of Artichoke (Cynara scolymus L.) for Non-Heated Cultivation in Jeju Island. J Bio-Environ Control 17:293-296  

19. Song SY, Ha TJ, Jang KC, Kim IJ, Kim SW (2012) Establishment of rapid discrimination system of leguminous plants at metabolic level using FT-IR spectroscopy with multivariate analysis. J Plant Biotechnol 39:121-126. doi:10.5010/JPB.2012.39.3.121  

20. Song SY, Jie EY, Ahn MS, Kim DJ, Kim IJ, Kim SW (2014) Discrimination of african yams containing high functional compounds using FT-IR fingerprinting combined by multivariate analysis and quantitative prediction of functional compounds by PLS regression modeling. Korean J Hortic Sci Technol 32:105-114. doi:10.7235/hort.2014.13094  

21. Stewart D, Yahiaoui N, McDougall GJ, Myton K, Marque C, Boudet AM, Haigh J (1997) Fourier-transform infrared and Raman spectroscopic evidence for the incorporation of cinnamaldehydes into the lignin of transgenic tobacco (Nicotiana tabacum L.) plants with reduced expression of cinnamyl alcohol dehydrogenase. Planta 201:311-318. doi:10.1007/s004250050072  

22. Timmins ÉM, SHowell SA, Alsberg BK, Noble WC, Goodacre R (1998) Rapid differentiation of closely related Candida species and strains by pyrolysis-mass spectrometry and Fourier transform-infrared spectroscopy. J Clin Microbiol 36:367-374   

23. Trygg J, Holmes E, Londstedt T (2007) Chemometrics in metabonomics. J Proteomes Res 6:467-479. doi:10.1021/pr060594q  

24. Wang M, Simon JE, Aviles IF, Zheng Q, Tadmor Y (2003) Analysis of antioxidative phenolic compounds in artichoke (Cynara scolymus L.). J Agric Food Chem 51:601-608. doi:10.1021/jf020792b   

25. Wenning M, Seiler H, Scherer S (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl Environ Microbiol 68:4717-4721. doi:10.1128/AEM.68.10.4717-4721.2002   

26. Wold H (1966) Estimation of principal components and related models by iterative least squares. In KR Krishnaiah, ed, Multivariate Analysis. Academic Press, NY, USA, pp 391-420   

27. Wolkers WF, Oliver AE, Tablin F, Crowe JH (2004) A fourier transform infrared spectroscopy study of sugar glasses. Carbohydr Res 339:1077-1085. doi:10.1016/j.carres.2004.01.016