Article | 04. 2016 Vol. 34, Issue. 2
Genetic Diversity and Phylogenetic Relationships between Chinese Cabbages [B. campestris (syn. rapa) L.] and Cabbages (B. oleracea L.) in Korea



School of Life Sciences, Ludong University1
Deaprtment of Agricultural Life Science, Kangwon National University2
Deaprtment of Controlled Agriculture, Kangwon National University3
Deaprtment of Horticulture, Kangwon National University4
Deaprtment of Bio-Health Technology, Kangwon National University5
Institute of Bioscience and Biotechnology, College of Biomedical Science, Kangwon National University6




2016.04. 294:304


PDF XML




Members of the genus Brassica, which are known as oil crops or cruciferous vegetables, are widely cultivated in Canada, Australia, Asian and Europe. Because Brassica species have high yields, are well adapted to their environments, and are self-incompatible, the germplasm is abundant. Previous studies have reported abundant genetic diversity even within Brassica subspecies. In Korea, fresh cabbage leaves are eaten with roast meat, and to meet the current popular demand, new varieties are being increasingly bred. To determine the genetic diversity and relationships among the cabbage vegetables in Korea, we evaluated the genetic variation of 18 accessions based on 5S and 18S ribosomal RNA (rRNA) gene sequences. We detected many variable nucleotide sites, especially in the 5S rRNA gene sequences. Because the length of the 18S rRNA gene might influence the dissimilarity rate statistics, we used both the 5S and 18S sequences to analyze the phylogenetic relationships. S7 (B. oleracea) showed the most distant phylogenetic relationship with the other Brassica species. Interestingly, B2 (B. oleracea), B15, and B18 (B. campestris) have three different types of leaf profiles, and were divided into one group, and the other Brassica species formed another group. Statistical analysis of interspecies and intraspecies genetic distances revealed that B. campestris L. showed higher genetic diversity than B. oleracea L. This work provides additional data that facilitates the evaluation of the genetic variation and relationships among Brassica species. The results could be used in functional plant breeding programs to improve Brassica crops.



1. Ashraf M, McNeilly T (2004) Salinity tolerance in Brassica oilseeds. Crit Rev Plant Sci 23:157-174. doi:10.1080/07352680490433286  

2. Attia T, Busso C, Röbbelen G (1987) Digenomic triploids for an assessment of chromosome relationships in the cultivated diploid Brassica species. Genome 29:326-330. doi:10.1139/g87-053  

3.   

4. Bleidorn C, Vogt L, Bartolomaeus T (2003) New insights into polychaete phylogeny (Annelida) inferred from 18S rDNA sequences. Mol Phylogenet Evol 29:279-288. doi:10.1016/S1055-7903(03)00107-6  

5. Campell BR, Song Y, Posch TE, Cullis CA, Town CD (1992) Sequence and organization of 5S ribosomal RNA-encoding genes of Arabidopsis thaliana. Gene 112:225-228. doi:10.1016/0378-1119(92)90380-8   

6. Chen BY, Wu XM, Xu K, Wang HZ, Li XZ (2004) Genetic diversity analysis on 55 B. campestris L. from Hunan province in China. Chin J Oil Crop Sci 26:10-14 (in Chinese with English abstract)  

7. Chen BY, Wu XM, Xu K, Wang HZ, Li XZ (2006) RAPD analysis for the genetic diversity of 31 B. campestris L. from Jiangsu province in China. Chin J Oil Crop Sci 28:67-71 (in Chinese with English abstract)  

8. Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11-15  

9. Duncan DB (1955) Multiple range and multiple F tests. Biometrics 11:1-42. doi:10.2307/3001478  

10. Dvoř ák J, Zhang HB, Kota RS, Lassner M (1996) Organization and evolution of the 5S ribosomal RNA gene family in wheat and related species. Genome 32:1003-1009. doi:10.1139/g89-545  

11. Gottlob McHugh SG, Levesque M, MacKenzie K, Olson M, Yarosh O, Johnson DA (1990) Organization of the 5S rRNA genes in the soybean Glycine max (L.) Merrill and conservation of the 5S rDNA repeat structure in higher plant. Genome 33:486-494. doi:10.1139/g90-072  

12. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Calif Agric Exp Stn Circ 347:1-32  

13. Huang XQ, Ma RC, Li L, Chen J, Dong YP (2009) Genetic diversity analysis on Brassica campestris L. from Guizhou province in China.  

14. Southwest China J Agric Sci 22:271-276 (in Chinese with English abstract)Joshi K, Chavan P, Warude D, Patwardhan B (2004) Molecular markers in herbal drug technology. Curr Sci 87:159-165  

15. Liu RH, Meng JL (2006) RFLP and AFLP analysis of inter- and intraspecific variation of Brassica rapa and B. napus shows that B. rapa is an important genetic resource for B. napus improvement. Acta Genetica Sin 33:814-823. doi:10.1016/S0379-4172(06)60115-7   

16. McGrath MJ, Quiros CF (1991) Inheritance of isozyme and RFLP markers in Brassica campestris and comparison with B. oleracea.Theor Appl Genet 82:668-673. doi:10.1007/BF00227309  

17. Meng SC, Zheng XY, Liu YM, He WM, Liu PR (2005) Diversity analysis of morphological traits in Chinese cabbage germplasm resources. Acta Agric Boreali Sin 20:57-61 (in Chinese with English abstract)  

18. Meyer CP, Paulay G (2005) DNA barcoding: error rates based on comprehensive sampling. PLoS Biol 3:e422. doi:10.1371/journal.pbio.0030422  

19. Nasrallah JB, Nasrallah ME (1989) The molecular genetics of self-incompatibility in Brassica . Annu Rev Genet 23:121-139.doi:10.1146/annurev.ge.23.120189.001005  

20. Park YK, Park KC, Park CH, Kim NS (2000) Chromosomal localization and sequence variation of 5S rRNA gene in five Capsicum species. Mol Cells 10:18-24. doi:10.1007/s10059-000-0018-4  

21. Scoles GJ, Gill BS, Xin ZY, Clarke BC, McIntyre CL, Chapman C, Appels R (1988) Frequent duplication and deletion events in the 5S RNA genes and the associated spacer regions of the Triticeae. Plant Syst Evol 160:105-122. doi:10.1007/BF00936713   

22. Simonsen V, Heneen WK (1995) Genetic variation within and among different cultivars and landraces of Brassica campestris L. and B.oleracea L. based on isozymes. Theor Appl Genet 91:346-352. doi:10.1007/BF00220898  

23. Sogin ML (1990) Amplification of ribosomal RNA genes for molecular evolution studies. In MA Innis, DH Gelfand, JJ Sninsky, TJ White,eds, PCR protocols, a guide to methods and applications. Academic Press, New York, USA, pp 307-322. doi:10.1016/b978-0-12- 372180-8.50041-x  

24. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM,Prince LM, Kress WJ, Nixon KC, Farris JS (2000) Angiosperm phylogeny inferred from 18S rDNA, rbc L, and atpB sequences. Bot J Linn Soc 133:381-461. doi:10.1006/bojl.2000.0380  

25. Song KM, Osborn TC, Williams PH (1990) Brassica taxonomy based on nuclear restriction fragment length polymorphisms (RFLPs). 3.Genome relationships in Brassica and related genera and the origin of B. oleracea and B. rapa (syn. campestris). Theor Appl Genet 79:497-506. doi:10.1007/BF00226159  

26. Warwick SI (1993) Wild species in the tribe Brassicaceae (Cruciferae) as sources of agronomic traits. In Guide to the wild germplasm of Brassica and allied crops. Technical Bulletin 17E, Center for Land and Biological Resources Research Branch, Agriculture Canada,Ottawa, Ontario, Canada, pp 1-19  

27. Warwick SI, Black LD, Aguinagalde I (1992) Molecular systematic of Brassica and allied genera (subtribe Brassicinae, Brassieae )- chloroplast DNA variation in the genus Diplotaxis. Theor Appl Genet 83:839-850. doi:10.1007/BF00231281  

28. Xin Y, Cui HR, Lu MZ, Yao YL, Jin JQ, Lim YP, Choi SY (2006) Data mining for SSRs in ESTs and EST-SSR Marker development in Chinese cabbage. Acta Hortic Sin 33:549-554 (in Chinese with English abstract)  

29. Xu K, Chen BY, Wang HZ, Hu Q, Dixelius C, Wu XM (2004) RAPD analysis of genetic diversity of B. campestris accessions from Hubei and Zhejiang provinces and its relation with agronomic traits. Chin J Oil Crop Sci 26:20-26 (in Chinese with English abstract)  

30. Yanagino T, Takahata Y, Hinata K (1987) Chloroplast DNA variation among diploid species in Brassica and allied genera. Jpn J Genet 62:119-125. doi:10.1266/jjg.62.119