Article | 02. 2016 Vol. 34, Issue. 1
Marker-Assisted Selection for Monoecy in Chamoe (Cucumis melo L.)



Department of Life Science, Dongguk University-Seoul1
Department of Bioresources Engineering, Sejong University,2




2016.02. 134:141


PDF XML




The DNA marker T1ex, originally developed from melon (Cucumis melo L.) for monoecy, was employed in chamoe, which is referred to as oriental melon. This marker shows size variations in monoecious melon. However, in chamoe, no such detrimental size variation was found in monoecious chamoe, and 99% association between flower phenotypes and genotypes of the T1ex marker was observed in 106 lines of chamoe. To evaluate the efficacy of the T1ex marker for marker-assisted selection (MAS), a total of 240 plants of chamoe breeding lines were screened using the T1ex marker. Among these, 98 varieties were selected. Although the T1ex marker might not be useful for MAS in melon, we found 100% concordance between genotypes and phenotypes for sex expression in chamoe. These results suggest that the T1ex marker will be a useful resource for MAS for monoecy in chamoe.



1. Boualem, A., M. Fergany, R. Fernandez, C. Troadec, A. Martin, H. Morin, M.A. Sari, F. Collin, J.M. Flowers, and M. Pitrat. 2008. A conserved mutation in an ethylene biosynthesis enzyme leads to andromonoecy in melons. Science 321:836-838.  

2. Doyle, J. and J.L. Doyle. 1987. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem. Bull. 19:11-15.  

3. Feng, H., X.M. Li, Z.Y. Liu, P. Wei, and R.Q. Ji. 2009. A co-dominant molecular marker linked to the monoecious gene derived from gene sequence in L. Afr. J. Biotechnol. 8:3168-3174.  

4. Francia, E., G. Tacconi, C. Crosatti, D. Barabaschi, D. Bulgarelli, E. Dall'Aglio, and G. Vale. 2005. Marker assisted selection in crop plants. Plant Cell Tissue Organ. Cult. 82:317-342. http://dx.doi.org/10.1007/s11240-005-2387-z  

5. Kenigsbuch, D. and Y. Cohen. 1990. The inheritance of gynoecy in muskmelon. Genome 33:317-320.  

6. Kim, N.H., J.Y. Oh, B.H Kim, E.K. Choi, U.S. Hwang, J.E. Staub, S.M. Chung, and Y.H. Park. 2015. The gene provides sequence variation for the development of DNA markers associated with monoecious sex expression in melon ( L). Hortic. Environ. Biotechnol. 56:535-545.  

7. Kong, Q., C. Xiang, J. Yang, and Z. Yu. 2011. Genetic variations of Chinese melon landraces investigated with EST-SSR markers. Hortic. Environ. Biotechnol. 52:163-169.  

8. Li, Z., S. Huang, S. Liu, J. Pan, Z. Zhang, Q. Tao, Q. Shi, Z. Jia, W. Zhang, and H. Chen. 2009. Molecular isolation of the M gene suggests that a conserved-residue conversion induces the formation of bisexual flowers in cucumber plants. Genetics 182:1381-1385.  

9. Little, H.A., E. Papadopoulou, S.A. Hammar, and R. Grumet. 2007. The influence of ethylene perception on sex expression in melon ( L.) as assessed by expression of the mutant ethylene receptor, At-etr1-1, under the control of constitutive and floral targeted promoters. Sex. Plant Reprod. 20:123-136.  

10. Martin, A., C. Troadec, A. Boualem, M. Rajab, R. Fernandez, H. Morin, M. Pitrat, C. Dogimont, and A. Bendahmane. 2009. A transposon-induced epigenetic change leads to sex determination in melon. Nature 461:1135-1138.   

11. Perl-Treves, R. 1999. Male to female conversion along the cucumber shoot: approaches to studying sex genes and floral development in Cucumis sativus, p. 189-215. In: C.C. Ainsworth (ed.). Sex determination in plants. Bios Scientific Publ., Oxford, UK.  

12. Pitrat, M., P. Hanelt, and K. Hammer. 2000. Some comments on infra-specific classification of cultivars of melon. In VII Eucarpia Meeting on Cucurbit Genetics and Breeding 510. p. 29-36.  

13. Rauwolf, U., H. Golczyk, J. Meurer, R.G. Herrmann, and S. Greiner. 2008. Molecular marker systems for Oenothera genetics. Genetics 180:1289-1306.  

14. Roy, R. and S. Saran. 1990. Sex expression in the Cucurbitaceae, p. 251-268. In: D.M. Bates, R.W. Robinson, and C. Jeffrey (eds.). Biology and utilization of the Cucurbitaceae. Cornell University Press, Ithaca, NY.  

15. Rudich, J., A. Halevy, and N. Kedar. 1972. Ethylene evolution from cucumber plants as related to sex expression. Plant Physiol. 49:998-999.  

16. Semagn, K., Å . Bjørnstad, and M. Ndjiondjop. 2006. Progress and prospects of marker assisted backcrossing as a tool in crop breeding programs. Afr. J. Biotechnol. 5:2588-2603.  

17. Slate, J., J. Gratten, D. Beraldi, J. Stapley, M. Hale, and J.M. Pemberton. 2009. Gene mapping in the wild with SNPs: guidelines and future directions. Genetica 136:97-107.  

18. Trebitsh, T., J.E. Staub, and S.D. O'Neill. 1997. Identification of a 1-aminocyclopropane-1-carboxylic acid synthase gene linked to the female (F) locus that enhances female sex expression in cucumber. Plant Physiol. 113:987-995.  

19. Truong, H.T.H., K.T Kim, S. Kim, M.C. Cho, H.R Kim, and J.G. Woo. 2011. Development of gene-based markers for the Bs2 bacterial spot resistance gene for marker-assisted selection in pepper (Capsicum spp.). Hortic. Environ. Biotechnol. 52:65-73.  

20. Winter, P. and G. Kahl. 1995. Molecular marker technologies for plant improvement. J. Microbiol. Biotechnol. 11:438-448.  

21. Yamasaki, S., N. Fujii, S. Matsuura, H. Mizusawa, and H. Takahashi. 2001. The M locus and ethylene-controlled sex determination in andromonoecious cucumber plants. Plant Cell Physiol. 42:608-619.