Article | 02. 2016 Vol. 34, Issue. 1
Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage



Department of Horticultural Biotechnology, Kyunghee University1




2016.02. 102:111


PDF XML




The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line (‘CT001’) and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.



1. Agarwal, P.K., P. Agarwal, M.K. Reddy, and S.K. Sopory. 2006. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep. 25:1263-1274.  

2. Baena-González, E., F. Rolland, J.M. Thevelein, and J. Sheen. 2007. A central integrator of transcription networks in plant stress and energy signalling. Nature 448:938-942.  

3. Benjamini, Y. and Y. Hochberg. 1995. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Statist. Soc. 57:289-300.  

4. Chen, L., Q.Q. Wang, L. Zhou, F. Ren, D.D. Li, and X.B. Li. 2013. Arabidopsis CBL-interacting protein kinase (CIPK6) is involved in plant response to salt/osmotic stress and ABA. Mol. Biol. Rep. 40:4759-4967.  

5. Chen, W., N.J. Provart, J. Glazebrook, F. Katagiri, H.S. Chang, T. Eulgem, F. Mauch, S. Luan, G. Zou, S.A. Whitham, P.R. Budworth, Y.  

6. Tao, Z. Xie, X. Chen, S. Lam, J.A. Kreps, J.F. Harper, A. Si-Ammour, B. Mauch-Mani, M. Heinlein, K. Kobayashi, T. Hohn, J.L. Dangl, X. Wang, and T. Zhu. 2002. Expression profile matrix of Arabidopsis transcription factor genes implies their putative functions in response to environmental stresses. Plant Cell 14:559-574.  

7. de Silva, K., B. Laska, C. Brown, H.W. Sederoff, and M. Khodakovskaya. 2011. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): a novel repressor of abiotic stress response. J. Exp. Bot. 62:2679-289.  

8. Devarenne, T.P. 2011. The plant cell death suppressor Adi3 interacts with the autophagic protein . Biochem. Biophys. Res. Commun. 412:699-703.   

9. Frey, A., D. Effroy, V. Lefebvre, M. Seo, F. Perreau, A. Berger, J. Sechet, A. To, H.M. North, and A. Marion-Poll. 2012. Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J. 70:501-512.  

10. Jaglo-Ottosen, K.R., S.J. Gilmour, D.G. Zarka, O. Schabenberger, and M.F. Thomashow. 1998. Arabidopsis overexpression induces COR genes and enhances freezing tolerance. Science 280:104-106.  

11. Kasuga, M., Q. Liu, S. Miura, K. Yamaguchi-Shinozaki, and K. Shinozaki. 1999. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat. Biotechnol. 17:287-291.  

12. Kim, J.S., J. Kim, T.H. Lee, K.M. Jun, T.H. Kim, Y.H. Kim, H.M. Park, J.S. Jeon, G. An, U.H. Yoon, B.H. Nahm, and Y.K. Kim. 2012. FSTVAL: a new web tool to validate bulk flanking sequence tags. Plant Methods 8:19.   

13. Kreps, J.A., Y. Wu, H.S. Chang, T. Zhu, X. Wang, and J.F. Harper. 2002. Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130:2129-2141.  

14. Leckie, C.P., M.R. McAinsh, G.J. Allen, D. Sanders, and A.M. Hetherington. 1998. Abscisic acid-induced stomatal closure mediated by cyclic ADP-ribose. Proc. Natl. Acad. Sci. USA 95:15837-15842.  

15. Lee, S.B., S.J. Jung, Y.S. Go, H.U. Kim, J.K. Kim, H.J. Cho, O.K. Park, and M.C. Suh. 2009. Two Arabidopsis 3-ketoacyl CoA synthase genes, KCS20 and KCS2/DAISY, are functionally redundant in cuticular wax and root suberin biosynthesis, but differentially controlled by osmotic stress. Plant J. 60:462-475.  

16. Maleck, K., A. Levine, T. Eulgem, A. Morgan, J. Schmid, K.A. Lawton, J.L. Dangl, and R.A. Dietrich. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat. Genet. 26:403-410.  

17. Martinez-Atienza, J., X.Y. Jiang, B. Garciadeblas, I. Mendoza, J.K. Zhu, J.M. Pardo, and F.J. Quintero. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143:1001-1012.  

18. Mehterov, N., S. Balazadeh, J. Hille, V. Toneva, B. Mueller-Roeber, and T. Gechev. 2012. Oxidative stress provokes distinct transcriptional responses in the stress-tolerant atr7 and stress-sensitive loh2 Arabidopsis thaliana mutants as revealed by multiparallel quantitative real-time PCR analysis of ROS marker and antioxidant genes. Plant Physiol. Biochem. 59:20-29.  

19. Pantin, F., F. Monnet, D. Jannaud, J.M. Costa, J. Renaud, B. Muller, T. Simonneau, and B. Genty. 2013. The dual effect of abscisic acid on stomata. New Phytol. 197:65-72.  

20. Rabbani, M.A., K. Maruyama, H. Abe, M.A. Khan, K. Katsura, Y. Ito, K. Yoshiwara, M. Seki, K. Shinozaki, and K. Yamaguchi-Shinozaki. 2003. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133:1755-1767.  

21. Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto, and K. Izui. 2000. Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319-327.  

22. Sakamoto, W. and T. Takami. 2014. Nucleases in higher plants and their possible involvement in DNA degradation during leaf senescence. J. Exp. Bot. 65:3835-3843.  

23. Seki, M., M. Narusaka, H. Abe, M. Kasuga, K. Yamaguchi-Shinozaki, P. Carninci, Y. Hayashizaki, and K. Shinozaki. 2001. Monitoring the expression pattern of 1,300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61-72.  

24. Tang, R.J., H. Liu, Y. Bao, Q.D. Lv, L. Yang, and H.X. Zhang. 2010. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74:367-380.  

25. Thiel, J., H. Rolletschek, S. Friedel, J.E. Lunn, T.H. Nguyen, R. Feil, H. Tschiersch, M. Muller, and L. Borisjuk. 2011. Seed-specific elevation of non-symbiotic hemoglobin AtHb1: beneficial effects and underlying molecular networks in Arabidopsis thaliana . BMC Plant Biol. 11:48. Wang, X., H. Wang, J. Wang, R. Sun, J. Wu, S. Liu, Y. Bai, J.H. Mun, I. Bancroft, F. Cheng, S. Huang, X. Li, W. Hua, J. Wang, X. Wang, M. Freeling, J.C. Pires, A.H. Paterson, B. Chalhoub, B. Wang, A. Hayward, A.G. Sharpe, B.S. Park, B. Weisshaar, B. Liu, B. Li, B. Liu, C. Tong, C. Song, C. Duran, C. Peng, C. Geng, C. Koh, C. Lin, D. Edwards, D. Mu, D. Shen, E. Soumpourou, F. Li, F. Fraser, G. Conant, G. Lassalle, G.J. King, G. Bonnema, H. Tang, H. Wang, H. Belcram, H. Zhou, H. Hirakawa, H. Abe, H. Guo, H. Wang, H. Jin, I.A. Parkin, J. Batley, J.S. Kim, J. Just, J. Li, J. Xu, J. Deng, J.A. Kim, J. Li, J. Yu, J. Meng, J. Wang, J. Min, J. Poulain, J. Wang, K. Hatakeyama, K. Wu, L. Wang, L. Fang, M. Trick, M.G. Links, M. Zhao, M. Jin, N. Ramchiary, N. Drou, P.J. Berkman, Q. Cai, Q. Huang, R. Li, S. Tabata, S. Cheng, S. Zhang, S. Zhang, S. Huang, S. Sato, S. Sun, S.J. Kwon, S.R. Choi, T.H. Lee, W. Fan, X. Zhao, X. Tan, X. Xu, Y. Wang, Y. Qiu, Y. Yin, Y. Li, Y. Du, Y. Liao, Y. Lim, Y. Narusaka, Y. Wang, Z. Wang, Z. Li, Z. Wang, Z. Xiong, and Z.   

26. Zhang. 2011. The genome of the mesopolyploid crop species Brassica rapa . Nat. Genet. 43:1035-1039.  

27. Yu, J.G. and Y.D. Park. 2015. Isolation and functional identification of a new gene, , related to drought tolerance derived from Brassica rapa . Korean J. Hortic. Sci. Technol. 33:575-584.  

28. Yu, J.G., G.H. Lee, J.S. Kim, E.J. Shim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using T-DNA. Mol. Cells 29:267-275.  

29. Yu, J.G., G.H. Lee, S.C. Lee, and Y.D. Park. 2014. Gene expression and phenotypic analyses of transgenic Chinese cabbage overexpressing the cold tolerance gene, BrCSR. Hortic. Environ. Biotechnol. 55:415-422.   

30. Zhao, J., Z. Sun, J. Zheng, X. Guo, Z. Dong, J. Huai, M. Gou, J. He, Y. Jin, J. Wang, and G. Wang. 2009. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Biol. 69:661-674.   

31. Zhu, L., J. Guo, J. Zhu, and C. Zhou. 2014. Enhanced expression of EsWAX1 improves drought tolerance with increased accumulation of cuticular wax and ascorbic acid in transgenic Arabidopsis. Plant Physiol. Biochem. 75:24-235.  

32. Zhu, T., P. Budworth, B. Han, D. Brown, H.S. Chang, Z. Zou, and X. Wang. 2001. Towards elucidating global gene expression in developing Arabidopsis: parallel analysis of 8,300 genes. Plant Physiol. Biochem. 39:221-242.