Article | 02. 2016 Vol. 34, Issue. 1
Analysis of Structure and Expression of Grapevine 2-oxoglutarate Oxygenase Genes in Response to Low Temperature



Department of Horticulture and Life Science, Yeungnam University1




2016.02. 46:54


PDF XML




2-Oxoglutarate (2OG) acts as a signaling molecule and plays a critical role in secondary metabolism in a variety of organisms, including plants. Six 2-oxoglutarate (2OG) and Fe(II) oxygenase (2OGO) genes, VlCE2OGO1 [Vitis labruscana 2-oxoglutarate (2OG) and Fe(II) oxygenase 1], VlCE2OGO2, VlCE2OGO3, VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6, which show different expression patterns upon transcriptome analysis of ‘Campbell Early’ grapevine exposed to low temperature for 4 weeks, were analyzed for their structure and expression. Comparison of the deduced amino acid sequences of the 2OGO genes from the V. labruscana transcripts revealed sequence similarities of 38.6% (VlCE2OGO1 and VlCE2OGO2) to 19.2% (VlCE2OGO2 and VlCE2OGO3). The lengths of these genes ranged from 1053 to 2298 bp, and they encoded 316 to 380 amino acids. The prediction of the secondary structure of the encoded proteins by Self-Optimized Prediction Method with Alignment (SOPMA) indicated that all the genes contained alpha helix (23.95 to 41.71%), extended strand (16 to 22.34%), beta turn (6.65 to 9.22%), and random coil (32.97 to 51.58%) in the analysis. Specific primers from unique regions in each gene obtained by alignment of nucleotide sequences were used in real time PCR for analysis of gene expression. All tested genes showed differential expression in grapevines exposed to low temperature. Of the six transcripts, VlCE2OGO1, VlCE2OGO2, and VlCE2OGO3 were up-regulated and VlCE2OGO4, VlCE2OGO5, and VlCE2OGO6 were down-regulated in response to cold treatments at all tested time points. The 2OG genes can be used for elucidation of mechanisms of tolerance to cold and as valuable molecular genetic resources for selection in breeding programs for cold-hardy grapevines.



1. Ahn, S.Y., S.A. Kim, S.H. Jo, and H.K. Yun. 2014. De novo transcriptome assembly of Vitis flexuosa grapevines inoculated with Elsinoe ampelina. Plant Genet. Res. 12:S130-S133.   

2. Araujo, W.L., T. Tohge, A. Nunes-Nesi, D.M. Daloso, M. Nimick, I. Krahnert, V.I. Bunik, G.B. Moorhead, and A.R. Fernie. 2012. Phosphonate analogs of 2-oxoglutarate perturb metabolism and gene expression in illuminated Arabidopsis leaves. Front Plant Sci 3:114.  

3. Aravind, L. and E.V. Koonin. 2001. The DNA-repair protein AlkB, EGL-9, and leprecan define new families of 2-oxoglutarate- and irondependent dioxygenases. Genome Biol. 2:1-0007.  

4. Butler. E.D. and T.F. Gallagher. 2000. Characterization of auxin‐induced ARRO‐1 expression in the primary root of Malus domestica. J. Exp. Bot. 51:1765-1766.  

5. Buxbaum, E. 2007. Protein structure. Fundamentals of protein structure and function, p. 12-37. Springer Science Business Media, New York, USA.  

6.  Chang, S., J. Puryear, and J. Cairney. 1993. A simple and efficient method for isolating RNA from pine trees. Plant Mol. Biol. 11:113-116.  

7. Cheng, A.X., X.J. Han, Y.F. Wu, and H.X. Lou. 2014. The function and catalysis of 2-oxoglutarate-dependent oxygenases involved in plant flavonoid biosynthesis. Int. J. Mol. Sci. 15:1080-1095.  

8. Ciannamea, S., J. Busscher-Lange, S. de Folter, G.C. Angent, and R.G.H. Immink. 2006. Characterization of the vernalization response in Lolium perenne by a cDNA microarray approach. Plant Cell Physiol. 47:481-492.  

9. Damme, M., R.P. Huibers, J. Elberse, and G.V. Ackerveken. 2008. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase that is defense-associated but required for susceptibility to downy mildew. Plant J. 54:785-793.  

10. Gasteiger, E., C. Hoogland, A. Gattiker, S. Duvaud, M.R. Wilkins, R.D. Appel, and A. Bairoch. 2005. Protein identification and analysis tools on the ExPASy server, p. 571-607. In: J.M. Walker (ed.). The proteomics protocols handbook. Humana press, Totowa, NJ.  

11. Giovanini, M.P., D.P. Puthoff, J.A. Nemacheck, O. Mittapalli, K.D. Saltzmann, H.W. Ohm, R.H. Shukle, and C.E. Williams. 2006. Genefor-gene defense of wheat against the Hessian fly lacks a classical oxidative burst. Mol. Plant Microbe Interact. 19:1023-1033.  

12. Guruprasad, K., B.V. Reddy, and M.W. Pandit. 1990. Correlation between stability of a protein and its dipeptide composition: a novel approach for predicting in vivo stability of a protein from its primary sequence. Protein Eng. 4:155-161.  

13. Harrison, A.P. and S.G. Pierzynowski. 2008. Biological effects of 2- oxoglutarate with particular emphasis on the regulation of protein, mineral and lipid absorption/metabolism, muscle performance, kidney function, bone formation and cancerogenesis, all viewed from a healthy ageing perspective state of the art. J. Physiol. Pharmacol. 59(Suppl. I):91-106.  

14. Kawai, Y., E. Ono, and M. Mizutani. 2014. Evolution and diversity of the 2-oxoglutarate-dependent dioxygenase superfamily in plants. Plant J. 78:328-343.  

15. Kim, S.A., S.Y. Ahn, S.H. Kim, J.H. Han, and H.K. Yun. 2014. Expression of basic helix-loop-helix transcripts during low temperature treatment in grapevines. Plant Breed. Biotechnol. 2:110-116.  

16. Kyte, J. and R.F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157:105-132.  

17. Letunic, I., T. Doerks, and P. Bork. 2014. SMART: recent updates, new developments and status in 2015. Nucl. Acids Res. 43:257-260.  

18. Lukacin, R. and L. Britsch. 1997. Identification of strictly conserved histidine and arginine residues as part of the active site in Petunia hybrida flavanone 3beta-hydroxylase. Eur. J. Biochem. 249:748-757.  

19. Morsy, M.R., A.M. Almutairi, J. Gibbons, S.J. Yun, and G. Benildo. 2005. The OsLti6 genes encoding low-molecular-weight membrane proteins are differentially expressed in rice cultivars with contrasting sensitivity to low temperature. Gene 344:171-180.  

20. Nam, J.C., S.J. Park, S.M. Jeong, J.H. Noh, Y.Y. Hur, and K.S. Park. 2012. Threshold of winter injury according to low temperature in dormancy and growing stage in several grape (Vitis hybrid) cultivars. Korean J. Hortic. Sci. Technol. 30(Suppl. II):100-101. (Abstr.)  

21. Notredame, C., D.G. Higgins, and J. Heringa. 2000. T-Coffee: A novel method for fast and accurate multiple sequence alignment. J. Mol. Biol. 302:205-217.  

22. Okumura, N., N.K. Nishizawa, Y. Umehara, T. Ohata, H. Nakanishi, T. Yamaguchi, M. Chino, and S. Moil. 1994. A dioxygenase gene (Ids2) expressed under iron deficiency conditions in the roots of Hordeum vulgate. Plant Mol. Biol. 25:705-719.  

23. Park, G.H., J.W. Lim, and G.J. Lee. 2000. Management of chilling injury in grapevine shoots in unheated plastic house in Korea. 2000 Research Report, p. 388-397. Gyeonggi-do Agricultural Research and Extension Services, Korea.  

24. Prescott, A.G. and M.D. Lloyd. 2000. The iron(II) and 2-oxoacid-dependent dioxygenases and their role in metabolism. Nat. Prod. Rep. 17:367-383.  

25. Prescott, A.G. and P. John. 1996. Dioxygenases: molecular structure and role in plant metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47:245-271.  

26. Qu, Y., C.L. Bolen, and D.W. Bolen. 1998. Osmolyte-driven contraction of a random coil protein. Proc. Natl. Acad. Sci. USA. 95:9268-9273.  

27. Rani, A., K. Singh, P.S. Ahuja, and S. Kumar. 2012. Molecular regulation of catechins biosynthesis in tea [Camellia sinensis (L.) O. Kuntze]. Gene 495:205-210.  

28. Schofield, S.J. and Z. Zhang. 1999. Structural and mechanistic studies on 2-oxoglutarate-dependent oxygenases and related enzymes. Curr. Opin. Struct. Biol. 9:722-731.  

29. Tattersall, E.A., J. Grimplet, L. DeLuc, M.D. Wheatley, D. Vincent, C. Osborne, A. Ergul, E. Lomen, R.R. Blank, K.A. Schlauch, J.C. Cushman, and G.R. Cramer. 2007. Transcript abundance profiles reveal larger and more complex responses of grapevine to chilling compared to osmotic and salinity stress. Funct. Integr. Genomics 7:317-333.  

30. Teixeira, P.F., T.T. Selao, V. Henriksson, H. Wang, A. Noren, and S. Nordlund. 2010. Diazotrophic growth of Rhodospirillum rubrum with 2-oxoglutarate as sole carbon source affects regulation of nitrogen metabolism as well as the soluble proteome. Res. Microbiol. 161:651-659.  

31. Trentmann. S.M. and H. Kende. 1995. Analysis of Arabidopsis cDNA that shows homology to the tomato E8 cDNA. Plant Mol. Biol. 29:161-166.  

32. Warmund, M.R., P. Guinan, and G. Fernandez. 2008. Temperatures and cold damage to small fruit crops across the Eastern United  

33. States associated with the April 2007 freeze. HortScience 43:1643-1647.  

34. Welford, R. W., J. M. Kirkpatrick, L.A. McNeill, M. Puri, N.J. Oldham, and C.J. Schofield. 2005. Incorporation of oxygen into the succinate co-product of iron (II) and 2-oxoglutarate dependent oxygenases from bacteria, plants and humans. FEBS Lett. 579:5170-5174.  

35. Zhao, M.X., Y.L. Jiang, Y.X. He, Y.F. Chen, Y.B. Teng, Y. Chen, C.C. Zhang, and C.Z. Zhou. 2010. Structural basis for the allosteric control of the global transcription factor NtcA by the nitrogen starvation signal 2-oxoglutarate. Proc. Natl. Acad. Sci. USA. 107:12487-12492.