Article | 02. 2015 Vol. 33, Issue. 1
Interspecific Transferability of Watermelon EST-SSRs Assessed by Genetic Relationship Analysis of Cucurbitaceous Crops



Department of Horticultural Bioscience, Pusan National University1
Life and Industry Convergence Research Institute, Pusan National University2




2015.02. 93:105


PDF XML




This study was performed to analyze genetic relationships of the four major cucurbitaceous crops including watermelon, melon, cucumber, and squash/pumpkin. Among 120 EST-SSR primer sets selected from the International Cucurbit Genomics Initiative (ICuGI) database, PCR was successful for 51 (49.17%) primer sets and 49 (40.8%) primer sets showed polymorphisms among eight Cucurbitaceae accessions. A total of 382 allele-specific PCR bands were produced by 49 EST-SSR primers from 24 Cucurbitaceae accessions and used for analysis of pairwise similarity and dendrogram construction. Assessment of the genetic relationships resulted in similarity indexes ranging from 0.01 to 0.85. In the dendrogram, 24 Cucurbitaceae accessions were classified into two major groups (Clade I and II) and 8 subgroups. Clade I comprised two subgroups, Clade I-1 for watermelon accessions [I-1a and I-1b-2: three wild-type watermelons (Citrullus lanatus var. citroides Mats. & Nakai), I-1b-1: six watermelon cultivars (Citrullus lanatus var. vulgaris Schrad.)] and Clade I-2 for melon and cucumber accessions [I-2a-1: 4 melon cultivars (Cucumis melo var. cantalupensis Naudin.), I-2a-2: oriental melon cultivars (Cucumis melo var. conomon Makino.), and I-2b: five cucumber cultivars (Cucumis sativus L.)]. Squash and pumpkin accessions composed Clade II {II-1: two squash/ pumpkin cultivars [Cucurbita moschata (Duch. ex Lam.)/Duch. & Poir. and Cucurbita maxima Duch.] and II-2: two squash/pumpkin cultivars, Cucurbita pepo L./Cucurbita ficifolia Bouche.}. These results were in accordance with previously reported classification of Cucurbitaceae species, indicating that watermelon EST-SSRs show a high level of marker transferability and should be useful for genetic study in other cucurbit crops.



1. Akashi, Y., N. Fukuda, T. Wako, M. Masuda, and K. Kato. 2002. Genetic variation and phylogenetic relationships in East and South Asian melons, Cucumis melo L., based on the analysis of five isozymes. Euphytica 125:385-396.  

2. Bisognin, D.A. 2002. Origin and evolution of cultivated cucurbits. Ciência Rural. 32:715-723.  

3. Botstein, D., R.L. White, M. Skolnick, and R.W. Davis. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32:314-331.  

4. Choi, Y.M., J.H. Hwang, K.W. Kim, Y.J. Lee, J.S. Lee, Y.H. Choi, B.G. Son, and Y.H. Park. 2012. Appilication of EST-SSR marker for purity test of watermelon F cultivars. J. Agr. Life Sci. 46:85-92.  

5. Chung, S., J. Staub, and J. Chen. 2006. Molecular phylogeny of Cucumis species as revealed by consensus chloroplast SSR marker length and sequence variation. Genome 49:219-229.  

6. D’Agostino, N., M. Aversano, L. Frusciante, and M.L. Chiusano. 2007. TomatEST database: In silico exploitation of EST data to explore expression patterns in tomato species. Nucleic Acids Res. 35:D901-5.  

7. Dijkhuizen, A., W.C. Kennard, M.J. Havey, and J.E. Staub. 1996. RFLP variation and genetic relationships in cultivated cucumber. Euphytica 90:79-87.  

8. Ellis, J. and J. Burke. 2007. EST-SSRs as a resource for population genetic analyses. Heredity 99:125-132.  

9. Ferriol, M., B. Pico, and F. Nuez. 2003a. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theor. Appl. Genet. 107:271-282.  

10. Ferriol, M., M.B. Pico, and F. Nuez. 2003b. Genetic diversity of some accessions of Cucurbita maxima from Spain using RAPD and SBAP markers. Genet. Resources Crop Evolution 50:227-238.  

11. Food and Agriculture Organization of the United Nations (FAO). 2013. Production/Crop. http://faostat3.fao.org/browse/Q/QC/E.  

12. Garcia-Mas, J., M. Oliver, H. Gomez-Paniagua, and M. De Vicente. 2000. Comparing AFLP, RAPD and RFLP markers for measuring genetic diversity in melon. Theor. Appl. Genet. 101:860-864.  

13. Gupta, P., S. Rustgi, S. Sharma, R. Singh, N. Kumar, and H. Balyan. 2003. Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol. Genet. Genomics 270:315-323.  

14. Hopkins, D., A. Levi, and M. Pitrat. 2008. Progress in the development of Crimson Sweet-type watermelon breeding lines with resistance to Acidovorax avenae subsp. citrulli. Proc. 9th EUCARPIA Mtg. Genet. Breeding of Cucurbitaceae. INRA, Avignon, 21-24 May, 2008.   

15. Horejsi, T. and J.E. Staub. 1999. Genetic variation in cucumber (Cucumis sativus L.) as assessed by random amplified poly-morphic DNA1. Genet. Resouces Crop Evolution 46:337-350.  

16. Hwang, J.H., S.G. Ahn, J.Y. Oh, Y.W. Choi, J.S. Kang, and Y.H. Park. 2011. Functional characterization of watermelon (Citrullus lanatus L.) EST-SSR by gel electrophoresis and high resolution melting analysis. Sci. Hortic. 130:715-724.  

17. Jeffrey, C. 1980. A review of the Cucurbitaceae. Bot. J. Linnean. Soc. 81:233-247.  

18. Katzir, N., Y. Danin-Poleg, G. Tzuri, Z. Karchi, U. Lavi, and P. Cregan. 1996. Length polymorphism and homologies of microsatellites in several Cucurbitaceae species. Theor. Appl. Genet. 93:1282-1290.  

19. Knerr, L., J. Staub, D. Holder, and B. May. 1989. Genetic diversity in Cucumis sativus L. assessed by variation at 18 allozyme coding loci. Theor. Appl. Genet. 78:119-128.  

20. Kong, Q., C. Xiang, and Z. Yu. 2006. Development of EST‐SSRs in Cucumis sativus from sequence database. Mol. Ecol. Notes 6:1234-1236.  

21. Kong, Q., C. Xiang, Z. Yu, C. Zhang, F. Liu, C. Peng, and X. Peng. 2007. Mining and charactering microsatellites in Cucumis melo expressed sequence tags from sequence database. Mol. Ecol. Notes 7:281-283.  

22. Kwon, Y., Y. Oh, S. Yi, H. Kim, J. An, S. Yang, S. Ok, and J. Shin. 2010. Informative SSR markers for commercial variety discrimination in watermelon (Citrullus lanatus). Genes Genomics 32:115-122.  

23. Lee, S.W. and Z.H. Kim. 2003. Genetic relationship analysis of melons (Cucumis melo) germplasm by RAPD method. J. Kor. Soc. Hort. Sci. 44:307-313.  

24. Levi, A., C.E. Thomas, A.P. Keinath, and T.C. Wehner. 2001. Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions. Genet. Resource Crop Evolution 48:559-566.  

25. Levi, A., P. Wechter, and A. Davis. 2009. EST-PCR markers representing watermelon fruit genes are polymorphic among watermelon heirloom cultivars sharing a narrow genetic base. Plant Genet. Resources 7:16-32.  

26. Li, D., H.E. Cuevas, L. Yang, Y. Li, J. Garcia-Mas, J. Zalapa, J.E. Staub, F. Luan, U. Reddy, X. He, Z. Gong, and Y. Weng. 2011. Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping. BMC Genomics 12:396-409.  

27. Nei, M. and W.H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. U.S.A. 76:5269-5273.  

28. Nunome, T., S. Negoro, I. Kono, H. Kanamori, K. Miyatake, H. Yamaguchi, A. Ohyama, and H. Fukuoka. 2009. Development of SSR markers derived from SSR-enriched genomic library of eggplant (Solanum melongena L.). Theor. Appl. Genet. 119:1143-1153.  

29. Park, Y.H., S.G. Ahn, Y.M. Choi, H.J. Oh, D.C. Ahn, J.G. Kim, J.S. Kang, Y.W. Choi, and B.R. Jeong. 2010. Rose (Rosa hybrida L.) EST-derived microsatellite markers and their transferability to strawberry (Fragaria spp.). Sci. Hortic. 125:733-739.  

30. Ritschel, P.S., T.C. Lins, R.L. Tristan, G.S. Buso, J.A. Buso, and M.E. Ferreira. 2004. Development of microsatellite markers from an enriched genomic library for genetic analysis of melon (Cucumis melo L.). BMC Plant Biol. 4:9-22.  

31. Rohlf, F. 2002. NTSYS-pc: Numerical taxonomy system, version 2.1. Exeter Publishing. Ltd., Setauket, New York, USA.   

32. Schaefer, H., C. Heibl, and S.S. Renner. 2009. Gourds afloat: A dated phylogeny reveals an Asian origin of the gourd family (Cucurbitaceae) and numerous oversea dispersal events. Proc. Biol. Sci. 276:843-851.  

33. Yi, G., J. M. Lee, S. Lee, D. Choi, and B. Kim. 2006. Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor. Appl. Genet. 114:113-130.  

34. Zhuang, F., J. Chen, J. Staub, and C. Qian. 2004. Assessment of genetic relationships among Cucumis spp. by SSR and RAPD marker analysis. Plant Breeding 123:167-172.