Article | 12. 2014 Vol. 32, Issue. 6
Characterization and Gene Co-expression Network Analysis of a Salt Tolerance-related Gene, BrSSR, in Brassica rapa



Department of Horticultural Biotechnology, Kyunghee University1




2014.12. 845:852


PDF XML




Among various abiotic stress factors, soil salinity decreases the photosynthetic rate, growth, and yield of plants. Recently, many genes have been reported to enhance salt tolerance. The objective of this study was to characterize the Brassica rapa Salt Stress Resistance (BrSSR) gene, of which the function was unclear, although the full-length sequence was known. To characterize the role of BrSSR, a B. rapa Chinese cabbage inbred line (‘CT001’) was transformed with pSL94 vector containing the full length BrSSR cDNA. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed that the expression of BrSSR in the transgenic line was 2.59-fold higher than that in the wild type. Analysis of phenotypic characteristics showed that plants overexpressing BrSSR were resistant to salinity stress and showed normal growth. Microarray analysis of BrSSR over-expressing plants confirmed that BrSSR was strongly associated with ERD15 (AT2G41430), a gene encoding a protein containing a PAM2 motif (AT4G14270), and GABA-T (AT3G22200), all of which have been associated with salt tolerance, in the co-expression network of genes related to salt stress. The results of this study indicate that BrSSR plays an important role in plant growth and tolerance to salinity.



1. Bertorello, A.M. and J.K. Zhu. 2009. SIK1/SOS2 networks: Decoding sodium signals via calcium-responsive protein kinase pathways. Pflugers Arch. 458:613-619.  

2. Deng, X., W. Hu, S. Wei, S. Zhou, F. Zhang, J. Han, L. Chen, Y. Li, J. Feng, B. Fang, Q. Luo, S. Li, Y. Liu, G. Yang, and G. He. 2013. TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8:e69881.  

3. Fait, A., H. Fromm, D. Walter, G. Galili, and A.R. Fernie. 2008. Highway or byway: The metabolic role of the GABA shunt in plants. Trends Plant Sci. 13:14-19.  

4. Flowers, T.J. and A.R. Yeo. 1995. Breeding for salinity resistance in crop plants: Where next? Aust. J. Plant Physiol. 22:875-884.  

5. Gong, Z., H. Koiwa, M.A. Cushman, A. Ray, D. Bufford, S. Kore-eda, T.K. Matsumoto, J. Zhu, J.C. Cushman, R.A. Bressan, and P.M. Hasegawa. 2001. Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol. 126:363-375.  

6. Halfter, U., M. Ishitani, and J.K. Zhu. 2000. The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc. Natl. Acad. Sci. USA 97:3735-3740.  

7. Hernandez, J.A., M.A. Ferrer, A. Jimenez, A.R. Barcelo, and F. Sevilla. 2001. Antioxidant systems and O.-/HO production in the apoplast of pea leaves. Its relation with salt-induced necrotic lesions in minor veins. Plant Physiol. 127:817-831.  

8. Kim, J.S., J. Kim, T.H. Lee, K.M. Jun, T.H. Kim, Y.H. Kim, H.M. Park, J.S. Jeon, G. An, U.H. Yoon, B.H. Nahm, and Y.K. Kim. 2012. FSTVAL: A new web tool to validate bulk flanking sequence tags. Plant Methods 8:19.  

9. Krasensky, J. and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63:1593-1608.   

10. Lee, M.K., H.S. Kim, J.S. Kim, S.H. Kim, and Y.D. Park. 2004. Agrobacterium-mediated transformation system for large-scale production of transgenic Chinese cabbage (Brassica rapa L. ssp. pekinensis) plants for insertional mutagenesis. J. Plant Biol. 47:300-306.    

11. Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells 26:595-605.  

12. Liu, J., M. Ishitani, U. Halfter, C.S. Kim, and J.K. Zhu. 2000. The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc. Natl. Acad. Sci. USA 97:3730-3734.  

13. Mantyla, E., V. Lang, and E.T. Palva. 1995. Role of abscisic acid in drought-induced freezing tolerance, cold acclimation, and accumulation of LT178 and RAB18 proteins in Arabidopsis thaliana. Plant Physiol. 107:141-148.  

14. Martinez-Atienza, J., X.Y. Jiang, B. Garciadeblas, I. Mendoza, J.K. Zhu, J.M. Pardo, and F.J. Quintero. 2007. Conservation of the salt overly sensitive pathway in rice. Plant Physiol. 143:1001-1012.  

15. Munns, R. 2002. Comparative physiology of salt and water stress. Plant Cell Environ. 25:239-250.  

16. Nordin, K., T. Vahala, and E.T. Palva. 1993. Differential expression of two related, low-temperature-induced genes in Arabidopsis thaliana (L.) Heynh. Plant Mol. Biol. 21:641-653.  

17. Perruc, E., M. Charpenteau, B.C. Ramirez, A. Jauneau, J.P. Galaud, R. Ranjeva, and B. Ranty. 2004. A novel calmodulin-binding protein functions as a negative regulator of osmotic stress tolerance in Arabidopsis thaliana seedlings. Plant J. 38:410-420.  

18. Qiu, Q.S., Y. Guo, M.A. Dietrich, K.S. Schumaker, and J.K. Zhu. 2002. Regulation of SOS1, a plasma membrane Na/H exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc. Natl. Acad. Sci. USA 99:8436-8441.  

19. Rengasamy, P. 2006. World salinization with emphasis on Australia. J. Exp. Bot. 57:1017-1023.  

20. Saijo, Y., S. Hata, J. Kyozuka, K. Shimamoto, and K. Izui. 2000. Over-expression of a single Ca-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23:319-327.  

21. Shi, H., B.H. Lee, S.J. Wu, and J.K. Zhu. 2003. Overexpression of a plasma membrane Na/H antiporter gene improves salt tolerance in Arabidopsis thaliana. Nature Biotech. 21:81-85.  

22. Tang, R.J., H. Liu, Y. Bao, Q.D. Lv, L. Yang, and H.X. Zhang. 2010. The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol. Biol. 74:367-380.  

23. Wu, S.J., L. Ding, and J.K. Zhu. 1996. SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617-627.  

24. Xiang, Y., Y.M. Huang, and L.Z. Xiong. 2007. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol. 144:1416-1428.  

25. Xu, D., X. Duan, B. Wang, B. Hong, T.H.D. Ho, and R. Wu. 1996. Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110:249-257.  

26. Yang, Q., Z.Z. Chen, X.F. Zhou, H.B. Yin, X. Li, X.F. Xin, X.H. Hong, J.K. Zhu, and Z. Gong. 2009. Overexpression of SOS (salt overly sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol. Plant 2:22-31.  

27. Yu, J.G. and Y.D. Park. 2013. Isolation and identification of a new gene related to salt tolerance in Chinese cabbage. Kor. J. Hort. Sci. Technol. 31:748-755.  

28. Yu, J.G., G.H. Lee, and Y.D. Park. 2012. Comparison of RNA interference-mediated gene silencing and T-DNA integration techniques for gene function analysis in Chinese cabbage. Kor. J. Hort. Sci. Technol. 30:734-742.  

29. Yu, J.G., G.H. Lee, J.S. Kim, E.J. Shim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T-DNA. Mol. Cells 29:267-275.  

30. Zhao, J., Z. Sun, J. Zheng, X. Guo, Z. Dong, J. Huai, M. Gou, J. He, Y. Jin, J. Wang, and G. Wang. 2009. Cloning and characterization of a novel CBL-interacting protein kinase from maize. Plant Mol. Biol. 69:661-674.  

31. Zhu, J.K. 1998. Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124:941-948.  

32. Zhu, J.K. 2003. Regulation of ion homeostasis under salt stress. Curr. Opin. Plant Biol. 6:441-445.  

33. Ziaf, K., R. Loukehaich, P. Gong, H. Liu, Q. Han, T. Wang, H. Li, and Z. Ye. 2011. A multiple stress-responsive gene ERD15 from Solanum pennellii confers stress tolerance in tobacco. Plant Cell Physiol. 52:1055-1067.