Article | 10. 2014 Vol. 32, Issue. 5
Construction of a Network Model to Reveal Genes Related to Salt Tolerance in Chinese Cabbage



Department of Horticultural Biotechnology, Kyunghee University1




2014.10. 684:693


PDF XML




Abiotic stress conditions such as cold, drought, and salinity trigger physiological and morphological changes and yield loss in plants. Hence, plants adapt to adverse environments by developing tolerance through complex regulation of genes related to various metabolic processes. This study was conducted to construct a coexpression network for multidirectional analysis of salt-stress response genes in Brassica rapa (Chinese cabbage). To construct the coexpression network, we collected KBGP-24K microarray data from the B. rapa EST and microarray database (BrEMD) and performed time-based expression analyses of B. rapa plants. The constructed coexpression network model showed 1,853 nodes, 5,740 edges, and 142 connected components (correlation coefficient > 0.85). On the basis of the significantly expressed genes in the network, we concluded that the development of salt tolerance is closely related to the activation of Na+ transport by reactive oxygen species signaling and the accumulation of proline in Chinese cabbage.



1. Balibrea, M.E., J.D. Amico, M.C. Bolarín, and F. Pérez-Alfocea. 2000. Carbon partitioning and sucrose metabolism in tomato plants growing under salinity. Physiologia Plantarum 110:503-511.  

2. Barnes, J. and P. Hut. 1986. A hierarchical O (N log N) force- calculation algorithm. Nature 324:446-449.  

3. Bassel, G.W., H. Lan, E. Glaab, D.J. Gibbs, T. Gerjets, N. Krasnogor, A.J. Bonner, M.J. Holdsworth, and N.J. Provart. 2011. Genome-wide network model capturing seed germination reveals coordinated regulation of plant cellular phase transitions. Proc. Natl. Acad. Sci. USA 108:9709-9714.  

4. Bindea, G., B. Mlecnik, H. Hackl, P. Charoentong, M. Tosolini, A. Kirilovsky, W.H. Fridman, F. Pagès, Z. Trajanoski, and J. Galon. 2009. ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25:1091-1093.  

5. Bray, E.A. 1997. Plant responses to water deficit. Trends Plant Sci. 2:48-54.  

6. Chan, Z., P.J. Bigelow, W. Loescher, and R. Grumet. 2012. Comparison of salt stress resistance genes in transgenic Arabidopsis thaliana indicates that extent of transcriptomic change may not predict secondary phenotypic or fitness effects. Plant Biotechnol. J. 10:284-300.  

7. Farhoudi, R. and F. Sharifzadeh. 2006. The effects of NaCl priming on salt tolerance in canola (Brassica napus L.) seedlings grown under saline conditions. Indian J. Crop Sci. 11: 74-78.  

8. Gilbert, G.A., C. Wilson, and M.A. Madore. 1997. Root-zone salinity alters raffinose family oligosaccharide metabolism and transport in Coleus. Plant Physiol. 115:1267-1276.  

9. Huang, D.W., B.T. Sherman, and R.A. Lempicki. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4:44-57.  

10. Ismail, A., M. Riemann, and P. Nick. 2012. The jasmonate pathway mediates salt tolerance in grapevines. J. Exp. Bot. 63:2127-2139.  

11. Jain, S., H.S. Nainawatee, R.K. Jain, and J.B. Chowdhury. 1991. Proline status of genetically stable salt-tolerant Brassica juncea L. somaclones and their parent cv. Prakash. Plant Cell Rep. 9:684-687.  

12. Jie, Z., Y. Yuncong, J.G. Streeter, and D.C. Ferree. 2010. Influence of soil drought stress on photosynthesis, carbohydrates and the nitrogen and phophorus absorb in different section of leaves and stem of Fugi/M.9EML, a young apple seedling. Afr. J. Biotechnol. 9:5320-5325.  

13. Kanehisa, M., S. Goto, Y. Sato, M. Furumichi, and M. Tanabe. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic. Acids Res. 40:D109-114.   

14. Kaye, Y., Y. Golani, Y. Singer, Y. Leshem, G. Cohen, M. Ercetin, G. Gillaspy, and A. Levine. 2011. Inositol polyphosphate 5-phosphatase7 regulates the production of reactive oxygen species and salt tolerance in Arabidopsis. Plant Physiol. 157:229-241.  

15. Krapp, A. and M. Stitt. 1995. An evaluation of direct and indirect mechanisms for the ‘sink-regulation’ of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-girdling source leaves. Planta 195:313-323.  

16. Krapp, A., W.P. Quick, and M. 1991. Stitt Ribulose-1,5-bisphosphate carboxylase-oxygenase, other Calvin-cycle enzymes and chlorophyll decrease when glucose is supplied to mature spinach leaves via the transpiration stream. Planta 186:58-69.  

17. Krasensky, J. and C. Jonak. 2012. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63:1593-1608.  

18. Lee, I., B. Ambaru, P. Thakkar, E.M. Marcotte, and S.Y. Rhee. 2010. Rational association of genes with traits using a genome- scale gene network for Arabidopsis thaliana. Nat. Biotechnol. 28:149-156.  

19. Lee, S.C., M.H. Lim, J.A. Kim, S.I. Lee, J.S. Kim, M. Jin, S.J. Kwon, J.H. Mun, Y.K. Kim, H.U. Kim, Y. Hur, and B.S. Park. 2008. Transcriptome analysis in Brassica rapa under the abiotic stresses using Brassica 24K oligo microarray. Mol. Cells  

20.  26:595-605.  

21. Leshem, Y., L. Seri, and A. Levine. 2007. Induction of phos-phatidylinositol 3-kinase-mediated endocytosis by salt stress leads to intracellular production of reactive oxygen species and salt tolerance. Plant J. 51:185-197.  

22. Liu, Y., X. Ji, L. Zheng, X. Nie, and Y. Wang. 2013. Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int. J. Mol. Sci. 14:9979-9998.  

23. Noreen, S. and M. Ashraf. 2010. Modulation of salt (NaCl)-induced effects on oil composition and fatty acid profile of sunflower (Helianthus annuus L.) by exogenous application of salicylic acid. J. Sci. Food Agric. 90:2608-2616.  

24. Pandit, A., V. Rai, T.R. Sharma, P.C. Sharma, and N.K. Singh. 2011. Differentially expressed genes in sensitive and tolerant rice varieties in response to salt-stress. J. Plant Biochem. Biotechnol. 20:149-154.  

25. Pattanagul, W. and M. Thitisaksakul. 2008. Effect of salinity stress on growth and carbohydrate metabolism in three rice (Oryza sativa L.) cultivars differing in salinity tolerance. Indian. J. Exp. Biol. 46:736-742.  

26. Rajagopal, D., P. Agarwal, W. Tyagi, S.L. Singla-Pareek, M.K. Reddy, and S.K. Sopory. 2007. Pennisetum glaucum Na/H antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol. Breed. 19:137-151.  

27. Ray, S., P.K. Dansana, J. Giri, P. Deveshwar, R. Arora, P. Agarwal, J.P. Khurana, S. Kapoor, and A.K. Tyagi. 2011. Modulation of transcription factor and metabolic pathway genes in response to water-deficit stress in rice. Funct. Integr. Genomics 11:157-178.  

28. Rodríguez-Rosales, M.P., F.J. Gálvez, R. Huertas, M.N. Aranda, M. Baghour, O. Cagnac, and K. Venema. 2009. Plant NHX cation/proton antiporters. Plant Signal Behav. 4:265-276.  

29. Rodriguez-Uribe, L., S.M. Higbie, J.M. Stewart, T. Wilkins, W. Lindemann, C. Sengupta-Gopalan, and J. Zhang. 2011. Identification of salt responsive genes using comparative microarray analysis in Upland cotton (Gossypium hirsutum L.). Plant Sci. 180:461-469.  

30. Singh, A. and R. Prasad. 2009. Salt stress effects growth and cell wall bound enzymes in Arachis hypogaea L. seedlings. Int. J. Integr. Biol. 7:117-123.  

31. Smoot, M.E., K. Ono, J. Ruscheinski, P.L. Wang, and T. Ideker. 2011. Cytoscape 2.8: New features for data integration and network visualization. Bioinformatics 27:431-432.   

32. Sobhanian, H., K. Aghaei, and S. Komatsu. 2011. Changes in the plant proteome resulting from salt stress: Toward the creation of salt-tolerant crops? J. Proteomics 74:1323-1337.  

33. Turan M.A., A.H. Awad Elkarim, N. Taban, and S. Taban. 2009. Effect of salt stress on growth, stomatal resistance, proline and chlorophyll concentrations on maize plant. Afr. J. Agric. Res. 4:893-897.  

34. Wang, W., B. Vinocur, and A. Altman. 2003. Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta 218:1-14.  

35. Yang, G., R. Zhou, T. Tang, X. Chen, J. Ouyang, L. He, W. Li, S. Chen, M. Guo, X. Li, C. Zhong, and S. Shi. 2011. Gene expression profiles in response to salt stress in Hibiscus tiliaceus. Plant. Mol. Biol. Rep. 29:609-617.  

36. Yao, J., W.M. Shi, and W.F. Xu. 2008. Effects of salt stress on expression of nitrate transporter and assimilation-related genes in tomato roots. Russ. J. Plant Physiol. 55:232-240.  

37. Yu, J.G., G.H. Lee, J.S. Kim, E.J. Shim, and Y.D. Park. 2010. An insertional mutagenesis system for analyzing the Chinese cabbage genome using Agrobacterium T-DNA. Mol. Cells 29:267-275.  

38. Zhang, H.X., J.N. Hodson, J.P. Williams, and E. Blumwald. 2001. Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc. Natl. Acad. Sci. USA. 98:12832-12836.