Article | 08. 2014 Vol. 32, Issue. 4
Underdeveloped Embryos and Dormancy Type in Seeds of Two Heloniopsis Species Endemic to Korea



Department of Horticultural Science and Biotechnology, Seoul National University1
Research Institute of Agriculture and Life Sciences, Seoul National University2




2014.08. 550:557


PDF XML




Heloniopsis koreana and Heloniopsis tubiflora (Melanthiaceae) are endemic herbaceous species of the Korean Peninsula. The Melanthiaceae family has been described as having seeds with small, underdeveloped embryos at the time of dispersal, and morphological (MD) or morphophysiological dormancy (MPD). However, there are few reports on embryo growth, morphology, and seed germination in Heloniopsis species. The aims of this study were to investigate embryo growth and seed dormancy, and to determine the type of dormancy exhibited by these species. The effects of incubation temperatures, light conditions, and gibberellic acid (GA3) on dormancy break and seed germination were tested. Freshly matured seeds of the two species had small embryos that occupied about 9-11% of the length of the endosperm, and which increased by more than 300% in length before radicle emergence, indicating that the embryos are underdeveloped at the time of dispersal. Embryos in the seeds grew under warm temperature regimes (between 25/15°C and 30/20°C). GA3 application (tested only in the light) overcame seed dormancy and promoted germination. Approximately 30% of the seeds of H. koreana and approximately 40% of the seeds of H. tubiflora germinated in suitable environmental conditions (light and temperature) within 4 weeks. Therefore, 30-40% of the seeds of the two species exhibited MD, and the rest of the seeds had non-deep simple MPD. Light was found to be one of the critical factors for germination because no seed of either of the two Heloniopsis species germinated under constant dark conditions, and thus, these species have the potential to form a persistent soil seed bank. Understanding these germination requirements will help in development of effective strategies to increase the establishment of seedlings in their native habitat.



1. Adams, C.A., J.M. Baskin, and C.C. Baskin. 2005. Trait stasis versus adaptation in disjunct relict species: evolutionary changes in seed dormancy-breaking and germination require-ments in a subclade of Aristolochia subgenus Siphisia (Piperales). Seed Sci. Res. 15:161-173.  

2. Ahn, Y.H. and T.J. Lee. 1997. Encyclopedia of Korean native plants. Tree of Life Press, Seoul, Korea.  

3. Alves-Da-Silva, D., F. Borghetti, K. Thompson, H. Pritchard, and J.P. Grime. 2011. Underdeveloped embryos and germination in Aristolochia galeata seeds. Plant Biol. 13:104-108.  

4. Baskin, C.C. and J.M. Baskin. 1988. Germination ecophysiology of herbaceous plant species in a temperate region. Amer. J. Bot. 75:286-305.  

5. Baskin, C.C. and J.M. Baskin. 1998. Seeds: Ecology, biogeography, and evolution of dormancy and germination. Academic Press, San Diego, CA, USA.  

6. Baskin, C.C., J.M. Baskin, and E.W. Chester. 2001. Morpho-physiological dormancy in seeds of Chamaelirium luteum, a long-lived dioecious lily. J. Torrey Bot. Soc. 128:7-15.  

7. Baskin, C.C., C.T. Chien, S.Y. Chen, and J.M. Baskin. 2008. Germination of Viburnum odoratissimum seeds: A new level of morphophysiological dormancy. Seed Sci. Res. 18:179-184.  

8. Baskin, J.M. and C.C. Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14:1-16.  

9. Baskin, J.M. and C.C. Baskin. 2008. Some considerations for adoption of Nikolaeva’s formula system into seed dormancy classification. Seed Sci. Res. 18:131-137.  

10. Cha, H.C., H.J. Park, and B.M. Min. 2002. Plant regeneration and morphology during in-vitro organogenesis from Heloniopsis orientalis (Thunb.) C. Tanaka. J. Plant Biol. 45:56-61.  

11. Chen, S.Y., C.C. Baskin, J.M. Baskin, and C.T. Chien. 2013. Underdeveloped embryos and kinds of dormancy in seeds of two gymnosperms: Podocarpus costalis and Nageia nagi (Podocarpaceae). Seed Sci. Res. 23:75-81.  

12. Copete, E., J.M. Herranz, M.A. Copete, J.M. Baskin, and C.C. Baskin. 2011. Non-deep complex morphophysiological dormancy in seeds of the Iberian Peninsula endemic geophyte Merendera montana (Colchicaceae). Seed Sci. Res. 21:267-281.  

13. Doussi, M.A. and C.A. Thanos. 2002. Ecophysiology of seed germination in Mediterranean geophytes. 1. Muscari spp. Seed Sci. Res. 12:193-201.  

14. Fuse, S., N.S. Lee, and M.N. Tamura. 2004. Biosystematic studies on the genus Heloniopsis (Melanthiaceae) II. Two new species from Korea based on morphological and molecular evidence. Taxon 53:949-958.  

15. Harper, J.L. 1977. Population biology of plants. Academic Press, New York.  

16. Hidayati, S.N., J.M. Baskin, and C.C. Baskin. 2000. Dormancy- breaking and germination requirements of seeds of four Lonicera species (Caprifoliaceae) with underdeveloped spatulate embryos. Seed Sci. Res. 10:459-469.  

17. Kawano, S., J. Masuda, and F.H. Utech. 2007. Life-history monographs of Japanese plants. 9: Helonias orientalis (Thunb.) N. Tanaka (Liliaceae). Plant Species Biol. 22:231-237.  

18. Kim, H.J., J.K. Hong, S.C. Kim, S.H. Oh, and J.H. Kim. 2011. Plant phenology of threatened species for climate change in sub-alpine zone of Korea: Especially on the summit area of Mt. Deogyusan. Kor. J. Plant Res. 24:549-556.  

19. Kondo, T., M. Mikubo, K. Yamada, J.L. Walck, and S.N. Hidayati. 2011. Seed dormancy in Trillium camschatcense (Melanthiaceae) and the possible roles of light and temperature requirements for seed germination in forests. Amer. J. Bot. 98:215-226.  

20. Koutsovoulou, K., M.I. Daws, and C.A. Thanos. 2014. Campanulaceae: A family with small seeds that require light for germination. Ann. Bot. 113:135-143.  

21. Martin, A.C. 1946. The comparative internal morphology of seeds. The Amer. Midl. Natur. 36:513-660.  

22. Milberg, P., L. Andersson, and K. Thompson. 2000. Large-seeded species are less dependent on light for germination than small- seeded ones. Seed Sci. Res. 10:99-104.  

23. Miller-Rushing, A.J. and R.B. Primack. 2008. Global warming and flowering times in Thoreau’s Concord: A community perspective. Ecology 89:332-341.  

24. Min, H.Y., H.J. Park, Y.L. Kim, E.J. Lee, H.J. Hwang, E.J. Park, and S.K. Lee. 2002. Cytotoxic activities of indigenous plant extracts in cultured human cancer cells. Natur. Prod. Sci. 8:170-172.  

25. Nikolaeva, M.G. 1977. Factors controlling the seed dormancy pattern, p. 51-74. In: A.A. Khan (ed.). The physiology and biochemistry of seed dormancy and germination. North-Holland Press, Amsterdam.  

26. Nikolaeva, M.G. 2001. Ecological and physiological aspects of seed dormancy and germination (review of investigations for the last century). Botanicheskii Zhurnal 86:1-14.  

27. Panda, P., M. Appalashetti, M. Natarajan, C.P. Mary, S.S. Venkatraman, and Z.M.A. Judeh. 2012. Synthesis and antipro-liferative activity of helonioside A, 3′,4′,6′-tri-O-feruloylsucrose, lapathoside C and their analogs. European J. Med. Chem. 58:418-430.  

28. Rodrigues, E.R.S. and F.A.D. Silveira. 2013. Seed germination requirements of Trembleya lanniflora (Melastomataceae), an endemic species from neotropical montane rocky savannas. Plant Species Biol. 28:165-168.  

29. Roh, M.S., A.K. Lee, J.K. Suh, and C.M. Bordelon. 2008. Interspecific variations in seed germination of Corylopsis. Sci. Hortic. 118:347-350.  

30. Takahashi, H. 1984. Germination ecology of Helopniopsis orientalis (Liliaceae). Sci. Rpt. Faculty Educ., Gifu Univ. (Natural Science) 8:1-8.  

31. Tanaka, N. 1998. Phylogenetic and taxonomic studies on Helonias, Ypsilandra, and Heloniopsis III. Taxonomic Revision. J. Jpn. Bot. 73:102-115.  

32. Vandelook, F. and J.A. van Assche. 2008. Temperature require-ments for seed germination and seedling development determine timing of seedling emergence of three monocotyledonous temperate forest spring geophytes. Ann. Bot. 102:865-875.  

33. Vandelook, F., N. Bolle, and J.A. van Assche. 2007. Seed dormancy and germination of the European Chaerophyllum temulum (Apiaceae), a member of a trans-Atlantic genus. Ann. Bot. 100:233-239.  

34. Vandelook, F., D. van De Moer, and J.A. van Assche. 2008. Environmental signals for seed germination reflect habitat adaptations in four temperate Caryophyllaceae. Funct. Ecol. 22:470-478.  

35. Walck, J.L., C.C. Baskin, and J.M. Baskin. 1999. Seeds of Thalictrum mirabile (Ranunculaceae) require cold stratification for loss of non-deep simple morphophysiological dormancy. Botany 77:1769-1776.