Article | 08. 2014 Vol. 32, Issue. 4
Control of Botrytis cinerea and Postharvest Quality of Cut Roses by Electron Beam Irradiation



Department of Plant Science, Seoul National University1
Research Center for Biobased Chemistry, Korea Research Institute of Chemical Technology2
Department of Floral and Plant Design, Cheonan Yonam College3




2014.08. 507:516


PDF XML




The present study was conducted to determine the effect of electron beam irradiation on control of Botrytis cinerea and postharvest quality of cut roses. Electron beam doses of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 10, and 20 kGy were applied with a 10-MeV linear electron beam accelerator (EB Tech, Korea). Electron beams inhibited spore germination and mycelial growth of B. cinerea with increasing irradiation doses. Conidia of B. cinerea were more tolerant to irradiation than were mycelia: the effective irradiation doses for 50% inhibition (ED50) of spore germination and mycelial growth were 2.02 kGy and 0.89 kGy, respectively. In addition, electron beam irradiation was more effective in reducing mycelial growth of B. cinerea at 10oC than at 20oC. Analysis of in vivo antifungal activity revealed that elevated irradiation doses exhibited increased control efficacy for tomato gray mold. Flower longevity and fresh weight of cut roses decreased when the irradiation dose was increased. In addition, flower bud opening tended to be inhibited in a dose-dependent manner. Although ‘Decoration’, ‘Il se Bronze’, ‘Queen Bee’, and ‘Revue’ roses tolerated and maintained overall postharvest quality up to 0.4 kGy, ‘Vivian’ did not, demonstrating that the irradiation sensitivity of cut roses varies according to cultivar.



1. Animal and Plant Health Inspection Service (APHIS). 2002. Irradiation phytosanitary treatment of imported fruit and vegetables. Federal Register 67:65016-65029.  

2. Animal and Plant Health Inspection Service (APHIS). 2006. Treatments for fruits and vegetables. Federal Register 71: 4451-4464.   

3. Barkai-Golan, R., R. Padova, I. Ross, M. Lapidot, H. Davidson, and A. Copel. 1993. Combined hot water and radiation treatments to control decay of tomato fruits. Sci. Hortic. 56:101-105.  

4. Bulger, M.A., M.A. Ellis, and L.V. Madden. 1987. Influence of temperature and wetness duration on infection of strawberry flowers by Botrytis cinerea and disease incidence of fruit originating from infected flowers. Phytopathology 77:1225-1230.  

5. Chang, A.Y., R.J. Gladon, M.L. Gleason, S.K. Parker, N.H. Agnew, and D.G. Olson. 1997. Postharvest quality of cut roses following electron-beam irradiation. HortScience 32:698-701.  

6. Choi, G.J., K.S. Jang, Y.H. Choi, and J.C. Kim. 2009. Control efficacy of a new fungicide fludioxonil on lettuce gray mold according to several conditions. Res. Plant Dis. 15:217-221.  

7. Elad, Y. 1988. Latent infection of Botrytis cinerea in rose flowers and combined chemical and physiological control of the disease. Crop Protec. 7:361-366.  

8. Fan, X. and K.J.B. Sokorai. 2011. Effects of gamma irradiation, modified atmosphere packaging, and delay of irradiation on quality of fresh-cut lceberg lettuce. HortScience 46:273-277.  

9. Fiester, S.E., S.L. Helfinstine, J.C. Redfearn, R.M. Uribe, and C.J. Woolverton. 2012. Electron beam irradiation dose dependently damages the Bacillus spore coat and spore membrane. Int. J. Microbiol. 2012:1-9.  

10. Follett, P.A. 2008. Effect of irradiation on Mexican leafroller (Lepidoptera: Tortricidae) development and reproduction. J. Econ. Entomol. 101:710-715.  

11. Food and Agriculture Organization of the United Nations (FAO). 2003. Guidelines for the use of irradiation as a phytosanitary measure. International plant protection convention, international standards for phytosanitary measures (ISPM) No. 18. FAO, Rome.  

12. Gomes, C., P. Da Silva, E. Chimbombi, J. Kim, E. Castell-Perez, and R.G. Moreira. 2008. Electron-beam irradiation of fresh broccoli heads (Brassica oleracea L. italica). LWT-Food Sci. Technol. 41:1828-1833.  

13. Gryczka, U., M. Ptaszek, W. Migdal, and L.B. Orlikowski. 2010. Application of electron beam irradiation for inhibition of Fusarium oxysporum f. sp. dianthi activity. Nukleonika 55:359-362.  

14. Hammer, P.E. 1988. Postharvest control of Botrytis cinerea on cut roses with picro-cupric-ammonium formate. Plant Dis. 72: 347-350.  

15. Hammer, P.E., S.F. Yang, M.S. Reid, and J.J. Marois. 1990. Postharvest control of Botrytis cinerea infections on cut roses using fungistatic storage atmospheres. J. Amer. Soc. Hort. Sci. 115:102-107.  

16. Hasbullah, N.A., R.M. Taha, A. Saleh, and N. Mahmad. 2012. Irradiation effect on in vitro organogenesis, callus growth and plantlet development of Gerbera jamesonii. Hortic. Bras. 30:252-257.  

17. Hatton, T.T. and R.H. Cubbedge. 1979. Phytotoxicity of methyl bromide as a fumigant for Florida citrus fruit. Proc. Fla. State Hort. Soc. 92:167-169.  

18. Hayashi, T., O.K. Kikuchi, and T. Dohino. 1998. Electron beam disinfestation of cut flowers and their radiation tolerance. Radiat. Phys. Chem. 51:175-179.  

19. International Plant Protection Convention (IPPC). 2008. Replace-ment or reduction of the use of methyl bromide as a phytosanitary measure. IPPC Recommendation, CPM-3. Rome.  

20. Kang, T.J., H.Y. Jeon, C.Y. Yang, H.H. Kim, and M.R. Cho. 2007. Development of labor-saving pest management system for cut flower rose cultivation. Kor. J. Hort. Sci. Technol. 25:418-424.  

21. Korea Agricultural Trade Information, Korea Agro-Fisheries and Food Trade Corporation (KATI). 2010. Korea agricultural trade information. http://kati.net/kati.do  

22. Kikuchi, O.K. 2003. Gamma and electron-beam irradiation of cut flowers. Radiat. Phys. Chem. 66:77-79.  

23. Kim, D.H. 2006. Principles of radiation sterilization of food materials. Food Ind. Nutr. 11:21-29.  

24. Koo, H.N., S.H. Yun, C. Yoon, and G.H. Kim. 2012. Electron beam irradiation induces abnormal development and the stabilization of p53 protein of American serpentine leafminer, Liriomyza trifolii (Burgess). Radiat. Phys. Chem. 81:86-92.  

25. Lahlali, R., M.N. Serrhini, D. Friel, M.H. Jijakli. 2007. Predictive modelling of temperature and water activity (solutes) on the in vitro radial growth of Botrytis cinerea Pers. Intl. J. Food Microbiol. 114:1-9.  

26. Lee, H.S. and Y.C. Shin. 2008. Workers’exposure to airborne methyl bromide in the exporting/importing plants and products quarantine company. J. Kor. Soc. Occup. Environ. Hyg. 18:32-40.  

27. Migdal, W., L.B. Orlikowski, M. Ptaszek, and U. Gryczka. 2012. Influence of electron beam irradiation on growth of Phytophthora cinnamomi and its control in substrates. Radiat. Phys. Chem. 81:1012-1016.  

28. Moon, S.R., B.K. Son, J.O. Yang, J.S. Woo, C. Yoon, and G.H. Kim. 2010. Effect of electron-beam irradiation on development and reproduction of Bemisia tabaci, Myzus persicae, Plutella xylostella and Tetranychus urticae. Kor. J. Appl. Entomol. 49:129-137.  

29. Orlikowski, L.B., W. Migdal, M. Ptaszek, and U. Gryczka. 2011. Effectiveness of electron beam irradiation in the control of some soilborne pathogens. Nukleonika 56:357-362.  

30. Pasini, C., F. D´Aquila, P. Curir, and M.L. Gullino. 1997. Effectiveness of antifungal compounds against rose powdery mildew (Sphaerotheca pannosa var. rosae) in glasshouses. Crop Protec. 16:251-256.  

31. Plant Protection Station, Ministry of Agriculture, Forestry and Fisheries of Japan (PPS). 2010. Plant quarantine statistics. http://www.maff.go.jp/pps/  

32. Reddy, S., J.A. Spencer, and S.E. Newman. 1992. Leaflet surfaces of blackspot-resistant and susceptible roses and their reactions to fungal invasion. HortScience 27:133-135.  

33. Sangwanangkul, P., P. Saradhuldhat, and R.E. Paull. 2008. Survey of tropical cut flower and foliage responses to irradiation. Postharvest Biol. Technol. 48:264-271.  

34. Sommer, N.F., R.J. Fortlage, P. M. Buckley, and E.C. Maxie. 1972. Comparative sensitivity to gamma radiation of conidia, mycelia, and sclerotia of Botrytis cinerea. Radiat. Bot. 12:99-103.  

35. Tiryaki, O. 1990. Inhibition of Penicillium expansum, Botrytis cinerea, Rhizopus stolonifer, and Alternaria tenuissima, which were isolated from Ankara pears by gamma irradiation. J. Turkish Phytopathol. 19:133-140.  

36. United National Environment Programme (UNEP). 2012. Handbook for the Montreal protocol on substances that deplete the ozone layer. 9th ed. UNEP, Nairobi. p. 40.  

37. Van Den Oever, R., D. Roosels, and D. Lahaye. 1982. Actual hazard of methyl bromide fumigation in soil disinfection. Brit. J. Ind. Med. 39:140-144.  

38. Wani, A.M., P.R. Hussain, R.S. Meena, and M.A. Dar. 2008. Effect of gamma-irradiation and refrigerated storage on the improvement of quality and shelf life of pear (Pyrus communis L., Cv. Bartlett/William). Radiat. Phys. Chem. 77:983-989.  

39. Yang, M.S., C.C. Chyau, D.T. Horng, and J.S. Yang. 2002. Effects of irradiation on epidermis ultrastructure of fresh day-lily flowers. Radiat. Phys. Chem. 63:249-251.