Article | 06. 2014 Vol. 32, Issue. 3
Morphological and Morphophysiological Dormancy in Seeds of Two Genera (Heloniopsis and Thalictrum) Native to Korea



Department of Horticultural Science and Biotechnology, Seoul National University1
Urban Agriculture Research Division, National Institute of Horticultural & Herbal Science, Rural Development Administration2
Research Institute of Agriculture and Life Sciences, Seoul National University3




2014.06. 310:317


PDF XML




This study was conducted to find basic information for the research of morphological dormancy in seeds of two genera (Heloniopsis and Thalictrum) native to Korea. Seeds of Heloniopsis koreana, Heloniopsis tubiflora, Thalictrum rochenbrunianum, Thalictrum uchiyamai, and Thalictrum coreanum were collected, and embryo morphology and seed germination were investigated. All seeds of five species had underdeveloped embryos which occupied about 10-20% of the full seed length at maturity. The seeds of H. koreana and H. tubiflora had rudimentary embryos. The seeds of T. rochenbrunianum, T. uchiyamai, and T. coreanum had intermediate type between rudimentary and linear embryo. The small embryos of all seeds of five species grew to a critical length before radicles emerge from the seeds. At 30 days after sowing, the seeds of H. koreana and H. tubiflora germinated to 22.7% and 40.7%, respectively. On the other hand, the seeds of T. rochenbrunianum, T. uchiyamai, and T. coreanum germinated to 12.5%, 3.3%, and 0%, respectively. If embryo growth and germination in seeds are completed in approximately 30 days, the seed are said to have morphological dormancy (MD). However, if the seeds require > 30 days for germination, they are considered to have morphophysiological dormancy (MPD). Thus, the seeds of H. koreana and H. tubiflora had about 78% and 60% MPD, respectively. On the other hand, the seeds of T. rochenbrunianum, T. uchiyamai, amd T. coreanum had about 87%, 96%, and 100% MPD, respectively. There was a different level of dormancy (MD and MPD) within the same seed population examined. Therefore, germination of the seeds was delayed due to the underdeveloped embryos. This result could contribute to determine morphological seed dormancy and germination mechanism in seeds of the Korean Peninsula.



1. Adams, C.A., J.M. Baskin, and C.C. Baskin. 2005. Trait stasis versus adaptation in disjunct relict species: Evolutionary changes in seed dormancy-breaking and germination requirements in a subclade of Aristolochia subgenus Siphisia (Piperales). Seed Sci. Res. 15:161-173.  

2. Baskin, C.C. and J.M. Baskin. 1985. Seed germination ecophysiology of the woodland spring geophyte Erythronium albidum. Bot. Gaz. 146:130-136.  

3. Baskin, C.C. and J.M. Baskin. 1998. Seeds: Ecology, biogeography, evolution of dormancy and germination. Academic Press, San Diego, California, USA.  

4. Baskin, J.M. and C.C Baskin. 2004. A classification system for seed dormancy. Seed Sci. Res. 14:1-16.  

5. Baskin, J.M. and C.C Baskin. 2005. Underdeveloped embryos in dwarf seeds and implications for assignment to dormancy class. Seed Sci. Res. 15:357-360.  

6. Copete, E., J.M. Herranz, M.A. Copete, J.M. Baskin, and C.C. Baskin. 2011. Non-deep complex morphophysiological dormancy in seeds of the Iberian Peninsula endemic geophyte Merendera Montana (Colchicaceae). Seed Sci. Res. 21:1-15.  

7. Fuse, S., N.S. Lee, and M.N. Tamura. 2004. Biosystematic studies on the genus Heloniopsis (Melanthiaceae) II. Two new species from Korea based on morphological and molecular evidence. Taxon 53:949-958.  

8. Hammer, K. and K. Khoshbakht. 2005. Towards a ‘red list’ for crop plant species. Genet. Resour. Crop Evolut. 52:249-265.  

9. Harper, J.L. 1977. Population biology of plants. Academic Press, London.  

10. Jeon, K.S., K.I. Heo, and S.T. Lee. 2007. Palynological and revisional studies of Thalictrum L. in Korea. Kor. J. Plant Taxon. 37:447-476.  

11. Kang, J.H., K.J. Jeong, K.O. Choi, Y.S. Chon, and J.G. Yun. 2010. Morphological characteristics and germination as affected by low temperature and GA in Orostachys ‘Jirisan’ and ‘Jejuyeonhwa’ seeds, Korea native plant. Kor. J. Hort. Sci. Technol. 28:913-920.  

12. Kim, H.J., H.H. Jung, and K.S. Kim. 2010. Influence of dry storage duration, gibberellic acid, and priming on germination of Aster koraiensis at low temperature. Hort. Environ. Biotechnol. 51: 471-476.  

13. Kondo, T., M. Mikubo, K. Yamada, J.L. Walk, and S.N. Hidayati. 2011. Seed dormancy in Trillium camschatcense (Melanthiaceae) and the possible roles of light and temperature requirements for seed germination in forests. Amer. J. Bot. 92:215-226.  

14. Kondo, T., N. Ocubo, T. Miura, K. Honda, and Y. Ishikawa. 2002. Ecophysiology of seed germination in Erythronium japonicum (Liliaceae) with underdeveloped embryos. Amer. J. Bot. 89:1779-1784.  

15. Korea National Arboretum. 2012. Thalictrum uchiyamai Nakai. http://www.nature.go.kr/wkbik1/wkbik1312.leaf?hback=true&plntIlstrNo=31959.  

16. La, Y.J. and J.J. Jeong. 2008. Effect of GA, moist chilling storage and priming treatment on seed germination of Caltha palustris var. membranacea Turcz. Flower Res. J. 16:174-178.  

17. Lee, H.S., J.E. Jang, D.L. Yoo, and S.Y. Ryu. 2003. Effects of temperature and gibberellin treatments on seed germination of Megaleranthis saniculifolia. J. Kor. Soc. Hort. Sci. 44: 388-392.   

18. Lee, S.Y., Y.H. Rhie, H.H. Jung, and K.S. Kim. 2011. Determination of the type of dormancy in seeds of Adonis amurensis Regel & Radde by ecological study. Kor. J. Hort. Sci. Technol. 29(Suppl. I):53. (Abstr.)  

19. Lee, S.Y., Y.H. Rhie, Y.J. Kim, and K.S. Kim. 2012. Morphological and morphophysiological dormancy in seeds of several spring ephemerals native to Korea. Flower Res. J. 20:193-199.  

20. Martin, A.C. 1946. The comparative internal morphology of seeds. The Amer. Midl. Nat. 36:513-660.   

21. Niimi, Y., D. Han, and S. Abe. 2006. Temperature affecting embryo development and seed germination of Christmas rose (Helleborus niger) after sowing. Scientia Hort. 107:292-296.   

22. Nikolaeva, M.G. 1999. Pattern of seeds dormancy and germination as related to plant phylogeny and ecological and geographical conditions of their habitats. Russ. J. Plant Physiol. 46:369-373.  

23. Nomizu, T., Y. Niimi, and E. Watanabe. 2004. Embryo development and seed germination of Hepatica nobilis Schreber var. japonica as affected by temperature after sowing. Scientia Hort. 99:345-352.  

24. Rhie, Y.H., H.H. Jung, and K.S. Kim. 2010. Seed dormancy and germination of Jeffersonia dubia. Kor. J. Hort. Sci. Technol. 28(Suppl. II):36-37. (Abstr.)  

25. Takahashi, H. 1984. Germination ecology of Heloniopsis orientalis (Liliaceae). Sci. Rpt. of the Faculty of Educ., Gifu University. Natural Sci. 8:1-8.  

26. Vandelook, F., N. Bolle, and J.A. van Assche. 2007. Seed dormancy and germination of the European Chaerophyllum temulum (Apiaceae), a member of a trans-atlantic genus. Ann. Bot. 100:233-139.  

27. Vandelook, F., J. Lenaerts, and J. Van Assche. 2009. The role of temperature in post-dispersal embryo growth and dormancy break in seeds of Aconitum lycoctonum L. Flora 204:536-542.  

28. Walk, J.F., C.C. Baskin, and J.M. Baskin. 1999. Seeds of Thalictrum merabile (Ranunculaceae) require cold stratification for loss of nondeep simple morphophysiological dormancy. Botany 77:1769-1776.  

29. Yeam, D.Y., J.J. Murray, H.L. Portz, and Y.K. Joo. 1985. Optimum seed coat scarification and light treatment for the germination of zoysiagrass (Zoysia japonica Steud) seed. J. Kor. Soc. Hort. Sci. 7:197-185.