Article | 4. 2014 Vol. 32, Issue. 2
Modeling Methodology for Cold Tolerance Assessment of Pittosporum tobira



Department of Landscape Architecture, Gyeongnam National University of Science and Technology1
Green Technology Institute, Gyeongnam National University of Science and Technology2
Southern Forest Resources Research Center, Korea Forest Research Institute3
Department of Forest Resources, Gyeongnam National University of Science and Technology4




2014.4. 241:251


PDF XML




This study was carried out to develop a simple, rapid and reliable assessment model to predict cold tolerance in Pittosporum tobira, a broad-leaved evergreen commonly used in the southern region of South Korea, which can minimize the possible experimental errors appeared in a electrolyte leakage test for cold tolerance assessment. The modeling procedure comprised of regrowth test and a electrolyte leakage test on the plants exposed to low temperature treatments. The lethal temperatures estimated from the methodological combinations of a electrolyte leakage test including tissue sampling, temperature treatment for potential electrical conductivity, and statistical analysis were compared to the results of the regrowth test. The highest temperature showing the survival rate lower than 50% obtained from the regrowth test was -10°C and the lethal was -10°C~-5°C. Based on the results of the regrowth test, several methodological combinations of electrolyte leakage tests were evaluated and the electrolyte leakage lethal temperatures estimated using leaf sample tissue and freeze-killing method were closest to the regrowth lethal temperature. Evaluating statistical analysis models, linear interpolation had a higher tendency to overestimate the cold tolerance than non-linear regression. Consequently, the optimal model for cold tolerance assessment of P. tobira is composed of evaluating electrolyte leakage from leaf sample tissue applying freeze-killing method for potential electrical conductivity and predicting lethal temperature through non-linear regression analysis.



1. Anderson, J.A., M.P. Kenna, and C.M. Taliaferro. 1988. Cold hardiness of ‘Midiron’ and ‘Tifgreen’ bermudagrass. HortScience 23:748-750.  

2. Anderson, J.A., C.M. Taliaferro, and D.L. Martin. 1993. Evaluating freeze tolerance of bermudagrass in a controlled environment. HortScience 28:955.  

3. Bannister, P. 2007. Godley review: A touch of frost? Cold hardiness of plants in the southern hemisphere. N.Z. J. Bot. 45:1-33.  

4. Cardona, C.A., R.R. Duncan, and O. Lindstrom. 1997. Low temperature tolerance assessment in Paspalum. Crop Sci. 37:1283-1291.  

5. Chun, J.U., S.W. Kang, D.S. Song, and J. Choi. 2000. Establish-ment of simple method for freezing resistance with use of electrical conductivity and 2, 3, 5-tripenyl tetrazolium chloride in tea (Camellia sinensis L.). J. Kor. Tea Soc. 6(3):121-133.   

6. Dunn, J.H., S.S. Bughrara, M.R. Warmund, and B.F. Fresenbug. 1999. Low temperature tolerance of zoysiagrasses. HortScience 34:96-99.  

7. Fry, J.D., N.S. Lang, R.G.P. Clifton, and F.P. Maier. 1993. Freezing tolerance and carbohydrate content of low temperature-acclimated and non-acclimated centipedegrass. Crop Sci. 33:1051-1055.  

8. Gudleifsson, B.E., C.J. Andrews, and H. Bjornsson. 1986. Cold hardiness and ice tolerance of pasture grasses grown and tested in controlled environment. Can. J. Plant Sci. 66:601-608.  

9. Iles, J.K. and N.H. Agnew. 1995. Seasonal cold-acclimation patterns of Sedum spectabile × telephium L. ‘Autumn Joy’ and Sedum spectabile Boreau. ‘Brilliant’. HortScience 30:1221-1224.  

10. Ingram, D.L. 1985. Modeling high temperature and exposure time interaction on root cell membrane thermostability. J. Amer. Soc. Hort. Sci. 110:470-473.  

11. Ingram, D.L. and D.W. Buchanan. 1981. Measurement of direct heat injury of roots of three woody plants. HortScience 16:769-771.  

12. Ingram, D.L. and D.W. Buchanan. 1984. Lethal high temperatures for roots of three citrus rootstocks. J. Amer. Soc. Hort. Sci. 109:189-193.  

13. Kim, I.H. 2006. Development of shallow-extensive green roof system for urban greening. PhD Thesis, Gyeongsang National Univ., Jinju, Korea.  

14. Kim, I.H., K.Y. Huh, and M.R. Huh. 2003. Heat tolerance assessment of Sedum species used for green roof systems. Kor. J. Hort. Sci. Technol. 21(Suppl. II):125.  

15. Kim, I.H., K.Y. Huh, and M.R. Huh. 2010. Cold tolerance assessment of Sedum species for shallow-extensive green roof system. Kor. J. Hort. Sci. Technol. 28:22-30.  

16. Lee, S.H., I.H. Heo, K.M. Lee, and W.T. Kwon. 2005. Classification of local climatic region in Korea. Asia-Pac. J. Atmos. Sci. 41:983-995.  

17. Maier, F.P., N.S. Lang, and J.D. Fry. 1994. Evaluation of an electrolyte leakage technique to predict St. Augustinegrass freezing tolerance. HortScience 29:316-318.  

18. Manley, R.C. and R.L. Hummel. 1996. Index of injury compared to tissue ionic conductance for calculating freeze damage of cabbage tissues. J. Amer. Soc. Hort. Sci. 121:1141-1146.  

19. Martineau, J.R., J.E. Specht, J.H. Williams, and C.Y. Sullivan. 1979. Temperature tolerance in soybeans. I. Evaluation of a technique for assessing cellular membrane thermostability. Crop Sci. 19:75-78.  

20. McKellar, M.A., D.W. Buchanan, D.L. Ingram, and C.W. Campbell. 1992. Freezing tolerance of avocado leaves. HortScience 27: 341-343.  

21. Park, S.G. and K.K. Oh. 2002. Conservation status and restoration of evergreen broad-leaved forests in warm temperate region, Korea (I). Kor. J. Environ. Ecol. 16:309-320.  

22. Shashikumar, K. and J.L. Nus. 1993. Cultivar and winter cover effects on bermudagrass cold acclimation and crown moisture content. Crop Sci. 33:813-817.  

23. Shim, K.K., K.J. Lee, S.T. Choi, M.B. Choi, S.R. Shim, Y.S. Kim, S.B. Choi, H.S. Jin, Y.H. Cho, Y.B. Kim, J.C. Nam, and W.K. Shim. 1993. Landscape dendrology. 5th ed. Munundang, Seoul, Korea.   

24. Shin, C.S. 2011. Cold tolerance assessment of Lagerstroemia indica and Pyracantha angustifolia with dormant branches. J. Kor. Inst. Landscape Archit. 39(6):118-125.   

25. Shin, H.C., N.C. Park, and J.H. Hwang. 2006. Warm-temperate tree species of South Korea. Forest Research Institute, Seoul, Korea.  

26. Shin, H.C., N.C. Park, I.H. Kim, and K.Y. Huh. 2009. Cold tolerance assessment of Quercus spp. as evergreens for the central region in South Korea. Kor. J. Hort. Sci. Technol. 27(Suppl. II):158-159.   

27. Steponkus, P.L. and F.O. Lanphear. 1967. Refinement of triphenyl tetrazolium chloride method of determining cold injury. Plant Physiol. 42:1423-1426.